• Title/Summary/Keyword: Moisture resistance

Search Result 468, Processing Time 0.029 seconds

Fire Resistance Behaviour of High Strength Concrete Members with Vapor Pressure and Creep Models (증기압 및 크리프 모델을 사용한 고강도콘크리트 부재의 내화성능평가)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.33-40
    • /
    • 2010
  • A numerical model considering the vapor pressure and the creep models, in the form of a analytical program, for tracing the behavior of high strength concrete (HSC) members exposed to fire is presented. The two stages, i.e., spalling procedure and fire resistance time, associated with the thermal, moisture flow, creep and structural analysis, for the prediction of fire resistance behavior are explained. The use of the analytical program for tracing the response of HSC member from the initial pre-loading stage to collapse, due to fire, is demonstrated. The validity of the numerical model used in this program is established by comparing the predictions from this program with results from others fire resistance tests. The analytical program can be used to predict the fire resistance of HSC members for any value of the significant parameters, such as load, sectional dimensions, member length, and concrete strength.

Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates

  • Saluja, Sorabh;Goyal, Shweta;Bhattacharjee, Bishwajit
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Roller Compacted Concrete (RCC) is a zero slump concrete consisting of a mixture of cementitious materials, sand, dense graded aggregates and water. In this study, an attempt has been made to investigate the effect of aggregate type on strength and abrasion resistance of RCC made by using granulated blast furnace slag (GGBS) as partial replacement of cement. Mix proportions of RCC were finalized based upon the optimum water content achieved in compaction test. Two different series of RCC mixes were prepared with two different aggregates: crushed gravel and limestone aggregates. In both series, cement was partially replaced with GGBS at a replacement level of 20%, 40% and 60%. Strength Properties and abrasion resistance of the resultant mixes was investigated. Abrasion resistance becomes an essential parameter for understanding the acceptability of RCC for rigid pavements. Experimental results show that limestone aggregates, with optimum percentage of GGBS, perform better in compressive strength and abrasion resistance as compared to the use of crushed gravel aggregates. Observed results are further supported by stoichiometric analysis of the mixes by using basic stoichiometric equations for hydration of major cement compounds.

Heat-Treated Polyvinyl Alcohol/Cellulose Nanocrystal Film with Improved Mechanical Properties and Water Resistance (내수성 및 기계적 물성이 향상된 열처리된 폴리비닐알코올/셀룰로오스 나노결정 필름)

  • Nguyen, Son Van;Lee, Bong-Kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.1-8
    • /
    • 2021
  • In this study, the water resistance and mechanical properties of heat-treated polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) films were investigated. PVA is the most commonly used synthetic biodegradable polymers owing to its excellent properties. However, the water/moisture sensitivity and relatively poor mechanical properties of PVA limits its applications. Although heat treatment is a conventionally used method to improve the mechanical strength and water resistance of PVA, the effectiveness of this method is insufficient. Therefore, CNC was used to further improve the mechanical properties and water resistance of the heat-treated PVA film. PVA/CNC nanocomposites containing CNC contents of 0, 1, 3, 5, and 10 wt% were fabricated using solvent casting and subsequent heat treatment. The mechanical properties and water resistance of PVA/CNC films were significantly improved. The tensile strength and wet strength of the PVA/CNC film with a CNC content of 5 wt% (PVA/CNC 5%) were 184.5% and 136.0% higher than those of the untreated PVA, respectively. In addition, the water absorption and solubility of PVA/CNC 5% were 56.6% and 68.2% lower than those of the untreated PVA.

A Study on Alkali-Treatment of Polyester/silk Union Cloth (폴리에스테르/견 교직물의 알칼리 감량가공에 관한 연구)

  • Lee, Seok-Young;Park, Sung-Woo;Seo, Mal-Yong;Cho, Kyu-Min;Gu, Kang
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.39-47
    • /
    • 1998
  • The purpose of this study was to investigate the effect of alkali treatment on EG solution of polyester/silk union cloth(P/S cloth) . Tensile strength, moisture regain, crease resistance, and reduction ratio of the treated P/S cloth were measured. The results of this study were as follows : 1) The weight loss of P/S cloth treated with EG solution was three times higher than those of P/S cloth treated with $H_2O$. The weight loss of P/S cloth was increased greatly with increasing concentration of NaOH, temperature, and time. Favorable weight reduction of treating condition could be obtained when lower concentration of NaOH was used with longer time. 2) If it was added $H_2O$ on EG solution, weight loss of polyester increased, while those of silk decreased. In addition, decreasing ratio of tensile strength warp direction (polyester) was lower, while those of weft direction(silk) was higher. 3) Moisture regain of P/S cloth treated with EG solution increased with weight loss up to 10% . Crease resistance of P/S cloth was the highest at weight loss of 10~15%.

  • PDF

A Study on the Chitosan Treatment of Polyester Fabrics by Low Temperature Plasma Method (저온 플라즈마법에 의한 폴리에스테르 직물의 키토산 처리가공에 관한 연구)

  • Park, Seong-Woo;Lee, Suk young;Cho, In-Sul;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.42-51
    • /
    • 1997
  • The purpose of this article is to investigate the effect of $O_{2}$ low temperature plasma treatment oft chitosan treatment of polyester fabrics. Moisture regain, static charge, crease resistance and reduction ratio of the treated fabric were measured. The results of this study were as follows: The add-on ratio and. the moisture regain of polyester fabrics treated with chitosan after treated by plasma(CP PET) were higher than those of polyester fabrics treated with only chitosan(C PET). The static charge of polyester fabrics decreased greatly with increasing the concentration of chitosan. A durability for laundering of CP PET was higher than those of C PET. The crease resistance of polyester fabrics decreased with ihcreasing the concentration of chitosan continuously. CP PET had higher decreasing rate and better durability than C PET. It showed that chitosan-treated polyester fabrics had over 90% reduction ratio after 10 times of laundering, and CP PET had better reduction ratio than C PET.

  • PDF

Rheological Properties of Composite Flour and Dough with Concentrated Sweet Pumpkin Powder (농축단호박 분말을 대체한 혼합분과 반죽의 특성)

  • Lee, Chan-Ho;Kim, Mun-Yong;Chun, Soon-Sil
    • Korean journal of food and cookery science
    • /
    • v.24 no.4
    • /
    • pp.511-516
    • /
    • 2008
  • In this study, composite flour and dough were prepared with concentrated sweet pumpkin powder(CSPP) at varying concentrations of 3, 6, 9, 12, and 15%. The samples and a control were then compared with regards to quality characteristics, including moisture, protein, and ash contents, farinogram characteristics, amylogram characteristics, and falling number of flour and extensogram characteristics of dough, in an effort to determine the optimal ratio of CSPP in the formulation. As the CSPP content increased, the moisture and protein contents of the flour increased, whereas the ash contents decreased. With regard to the farinogram characteristics of flour, water absorption, development time, and stability decreased with increasing CSPP content, while weakness increased. The control group evidenced a significantly higher beginning temperature of gelatinization as compared to the CSPP samples. The temperature of maximum viscosity, maximum viscosity, and falling number of flour decreased with increasing CSPP content. With regard to the extensogram characteristics of dough, extensibility decreased with increasing testing time and CSPP content, whereas resistance, maximum resistance, and R/E ratio increased. In conclusion, these results show that $6{\sim}9%$ CSPP may prove very useful as a substitute for wheat flour in the production of hardroll bread, and may provide good nutritional and functional properties.

Post Infection Physiobiochemical Alteration at Various Intensities of Leaf spot (Myrothecium roridum) in Mulberry

  • Kumar, P.M.Pratheesh;Qadri, S.M.H.;Pal, S.C.;Mishra, A.K.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.175-180
    • /
    • 2003
  • Changes in biochemical constituents and physiological alteration were studied in various intensities (1-5%, 6-15%, 16-30%, 31-50% and > 50%) of leaf spot (Myrothecium roridum) on mulberry leaves and compared with healthy leaves. Chlorophyll, total soluble sugar and total protein were decreased (P < 0.01), but total phenol increased due to pathogen infection. Changes in biochemical constituents showed significant correlation with intensity of disease. Chlorophyll ($r^2$= 0.92), and protein (($r^2$= 0.83) possessed negative while phenol (($r^2$= 0.61) possessed positive correlation. Photosynthetic rate, transpiration rate, stomatal conductance, moisture content (%) and physiological water use efficiency (pWUE) were decreased, but stomatal resistance increased in the infected leaves. Physiological parameters also possessed significant (P < 0.01) correlation with disease intensity. Photosynthetic rate (($r^2$= 0.96), transpiration rate ($r^2$=0.88), stomatal conductance (($r^2$= = 0.65), physiological water use efficiency (($r^2$= 0.88) and moisture content (r = 0.85) were negatively but stomatal resistance (($r^2$= 0.75) was positively correlated to disease intensities.

A Study on the Prediction of the Permanent Wilting Point in Woody Plant by Cambial Electrical Resistance (목본식물의 형성층 전기저항에 의한 영구위조점 예측에 관한 연구)

  • 김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.22 no.4
    • /
    • pp.75-80
    • /
    • 1995
  • It is important to estimate the possibility of recovery in physiologically damaged woody plant. It is suggested that C.E.R(cambial electrical resistance) might be a useful method to predict the permanent wilting point. D/A and A/D converter can be used to measure the C.E.R and it took only 10-20 msec for a measurement and the values were stable during this study. A computer could be used for the continual measurement of C.E.R. There were very big daily changes of C.E.R. was changed according to the changes of indoor temperature, but the phase was slightly different. It is reasoned that daily changes in C.E.R. is induced by the changes of water potential and cambial thickness. It was difficult to detect the changes of C.E.R. caused by changes in soil moisture under high soil water potential. Under low soil water potential, the changes in soil moisture under high soil water potential. Under low soil water potential, the changes of C.E.R. can be detected. After wilting, C.E.R. is increased very rapidly. When C.E.R. is not decreased by watering, it will be permanent wilting point. But it takes several days to confirm the permanent wilting point. To predict the possibility of recovery from wilting, the values of C.E.R. have no meaning. But the changes of C.E.R. are significant. Therefore we can predict the permant wilting point in woody plant by monitoring the change of C.E.R. by the computer.

  • PDF

Spatial Variability of Soil Moisture Content, Soil Penetration Resistance and Crop Yield on the Leveled Upland in the Reclaimed Highland (고령지 개간지 밭의 토양수분과 경도 및 작물수량의 공간변이성)

  • Park, Chol-Soo;Yang, Su-Chan;Lee, Gye-jun;Lee, Jeong-Tae;Kim, Hak-Min;Park, Sang-Hoo;Kim, Dae-Hoon;Jung, Ah-Yeong;Hwang, Seon-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.123-135
    • /
    • 2006
  • Spatial variability and distribution map of soil properties and the relationships between soil properties and crop yields are not well characterized in agroecosystems that have been land leveled to facilitate more cultivation of the new reclaimed sloping highland. Potato, onion, carrot, Chinese cabbage and radish were grown on the coarse sandy loam soil in 2004. Soil moisture content, soil penetration resistance and crop yield were sampled in the $10m{\times}50m$ field consisted of five plots. Sampling sites of each cultivation plot were 33 for the soil moisture, 11 for the soil penetration and 33 for the crop yield. The results of semivariance analysis, most of models were shown spherical equation. The significant ranges of each spatial variability model for the soil moisture, soil penetration and crop yield were broad as 33-35 meters in the potato cultivation plot, and that in the Chinese cabbage cultivation plot was narrow as 5-6 meters. The coefficient of variances (C.V.) of moisture, penetration and yield were various from 14 to 59 percents in five cultivation plots. The highest C.V. of potato yield was 59 percents, and that of the radish cultivation plot was as low as 14 percents. The required sample numbers for the determination of soil moisture content, soil penetration resistance and crop yield with error 10% at 0.05 significant level were ranged 8-40 for soil moisture, 7-25 for soil penetration and 424-4,678 for crop yield. The variogram and distribution map by kriging described field characteristics well so that the spatial variability would be useful for soil management for better efficiency and precision agriculture in the reclaimed highland.

Application of Hydrated Lime-Modified Asphalt Mixture Properties to Korean Pavement Research Program (한국형 도로포장 설계 프로그램의 소석회 사용 아스팔트 혼합물 특성 적용)

  • Kim, Dowan;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSES : The hydrated lime-modified asphalt, which improves moisture resistance, is normally used for pavements to reduce the number of potholes. However, the method of applying the material properties of the lime-modified asphalt mixture for use in pavements is not covered in the Korean Pavement Research Program (KPRP). The objective of this research is to find a method for the design application of lime-modified asphalt's material properties to the KPRP. METHODS: The section for test design is selected in some conditions which are related to the level of design regarding Annual Average Daily Traffic (AADT). To define the application methods of hydrated lime in the KPRP, the models of fatigue, rut and international roughness index (IRI) are determined based on the M-EPDG test results from some earlier research results. Moreover, it is well known that dynamic moduli of the unmodified mixture are not different from those of the lime-modified mixture. RESULTS: The performance results of hydrated lime-modified asphalt pavement were not very much different from those of the unmodified pavement, which meant the limited design regulations regarding fatigue failure, rutting deformation and IRI. CONCLUSIONS: The KPRP uses the weather model from the data for previous 10 years. It implies that the KPRP cannot predict abnormal climate changes accurately. Hence, the predictive weather data regarding the abnormal climate changes are unreliable. Secondly, the KPRP cannot apply the moisture resistance of asphalt mixtures. Therefore, a second level of design study will have to be performed to reflect the influence of moisture. It means that the influence on pavement performance can be changed by the application of hydrated lime in asphalt mixture design.