• Title/Summary/Keyword: Moisture Variations

Search Result 216, Processing Time 0.022 seconds

Pycnidiospore Production and Dispersal from the Warts Produced by Infection of Botryosphaeria dothidea on Apple Stems

  • Park, Chang-Hee;Yang, Hee-Jung;Hyun Woo;Kim, Dai-Gee;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.15 no.6
    • /
    • pp.330-334
    • /
    • 1999
  • Applying the method of quantitative analysis of pycnidiospore from the detached warts produced by the infection of Botryosphaeria dothidea on apple stems, repeated productivity of spores within the detached warts, variations in the amount of spores within the detached warts, variations in the amount of spores by the length of induction time for sporulation, and the effects of temperature and moisture on the sporulation were investigated. In addition to these experiment, the changes in the state of spores within the pycnidia contained in the warts accompanied by the induction of sporulation and dispersal of spores were also investigated. When detached warts were kept in moist conditions, the sporulation and discharge of spores were also investigated. When detached warts were kept in moist conditions, the sporulation and discharge of spores could be repeated several times, and the amount of spores were almost constant after each repeat of sporulation induction and dispersal of spores in a given period. The fact that the pycnidia filled with spores were observed at considerable rates within the warts which were subjected to the shaking in the water to release spores indicated that the spores might never be released until the pycnidia were fully matured. From the high rate of empty pycnidia even in the warts which were kept in moist conditions for induction of sporulation, the pycnidiospores might be produced through the development of new pycnidia. A considerable amount of pycnidiospores were produced at $5^{\circ}$, and the sporulation was accelerated with the rise of temperature until $35^{\circ}$. When the warts were supplied with sufficient moisture, sporulation was further accelerated. The results obtained in these experiment will be applied in developing the method for assessing the inhibitory efficacies of fungicides on the sporulation of this fungus, with which a new control measure would be developed.

  • PDF

A new thermal conductivity estimation model for weathered granite soils in Korea

  • Go, Gyu-Hyun;Lee, Seung-Rae;Kim, Young-Sang;Park, Hyun-Ku;Yoon, Seok
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.359-376
    • /
    • 2014
  • Thermal conductivity of ground has a great influence on the performance of Ground Heat Exchangers (GHEs). In general, the ground thermal conductivity significantly depends on the density (or porosity) and the moisture content since they are decisive factors that determine the interface area between soil particles which is available for heat transfer. In this study, a large number of thermal conductivity experiments were conducted for soils of varying porosity and moisture content, and a database of thermal properties for the weathered granite soils was set up. Based on the database, a 3D Curved Surface Model and an Artificial Neural Network Model (ANNM) were proposed for estimating the thermal conductivity. The new models were validated by comparing predictions by the models with new thermal conductivity data, which had not been used in developing the models. As for the 3D CSM, the normalized average values of training and test data were 1.079 and 1.061 with variations of 0.158 and 0.148, respectively. The predictions became somewhat unreliable in a low range of thermal conductivity values in considering the distribution pattern. As for the ANNM, the 'Logsig-Tansig' transfer function combination with nine neurons gave the most accurate estimates. The normalized average values of training data and test data were 1.006 and 0.954 with variations of 0.026 and 0.098, respectively. It can be concluded that the ANNM gives much better results than the 3D CSM.

Properties of Moisture Distribution on Bentonite by the Responses of Complex Dielectric Constant (복소유전율상수 반응에 의한 벤토나이트 수분분포 특성 연구)

  • Kim Man-li;Jeong Gyo-Cheo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.281-288
    • /
    • 2005
  • To evaluate a property of moisture distribution and volumetric water content on bentonite media the responses of complex dielectric constant were used which are measured by Frequency Domain Reflectometry with Vector Network Analyzer (FDR-V) system. The bentonite is widely used a barrier liner system in the waste disposal site, recently. In case of barrier liner system, generally, the coefficient of permeability should have to less than 10-7cm/sec. According to the results, the complex dielectric constants are increasing with increase the volumetric water content and temperature together. Also the variation of complex dielectric constant due to temperature gradient is confirmed that the moisture movements are increasing with the variations of temperature from high range to low range, which is represented the property of moisture distribution in the bentonite.

A Study on the Factors Affecting Vegetation Cover After Slope Revegetation - Focused on a JSB Method of Construction - (비탈면 녹화이후 식생피복에 영향을 미치는 요인에 관한 연구 - 자연생태복원 공법을 중심으로 -)

  • Kil, Sung-Ho;Lee, Dong-Kun;Cho, Min-Whan;Yang, Byung-E
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.127-136
    • /
    • 2011
  • This study was conducted on the field application for a method which is currently used. Although the method was performed with experimental knowledge, this study attempted to approach scientific ways through thirty sets of test-bed and three times monitoring limited by control variations for three months. The factors on previous studies are slope location, slope degree, type (roadfill vs. roadcut), aspect, vegetation cover, species, thickness, vertical length, horizontal length, soil type, elevation, erosion, soil-moisture, soil-hardness, pH, and so on. However, the factors of a suitable and significant level are slope degree, type, aspect, thickness, soil-moisture, vertical length and horizontal length in slope revegetation. the results were as follows : As a result of survey on soil types based on the status before construction, the rate of vegetation cover with non-mesh construction in soil areas was better than the rate of vegetation cover with fiber meshes and wire meshes. The rate of vegetation cover with fiber meshes in weathered rocks was better than using wire meshes. The rate of vegetation cover with the wire meshes in blasted rocks was better than using fiber meshes. Also, the factors affecting the rate of vegetation cover presented the number of appearance species, soil-moisture, thickness. this result presented the more appearance species as a positive role, and the lower soil-moisture and the thicker soil as a negative role.

Spatio-Temporal Variation of Soil Respiration and Its Association with Environmental Factors in Bluepine Forest of Western Bhutan

  • Cheten Thinley;Baghat Suberi;Rekha Chhetri
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.13-19
    • /
    • 2023
  • We investigated Soil respiration in Bluepine forest of western Bhutan, in relation to soil temperature, moisture content and soil pH and it was aimed at establishing variability in space and time. The Bluepine forest thrives in the typical shallow dry valleys in the inter-montane Bhutan Himalaya, which is formed by ascending wind from the valley bottom, which carries moisture from the river away to the mountain ridges. Stratified random sampling was applied and the study site was classified into top, mid, low slope and further randomized sample of n=20 from 30 m×30 m from each altitude. The overall soil respiration mean for the forest was found 2248.17 CO2 g yr-1 and it is ~613.58 C g yr-1. The RS from three sites showed a marginal variation amongst sites, lower slope (2,309 m) was 4.64 μ mol m-2 s-1, mid slope (2,631 m) was 6.78 μ mol m-2 s-1 and top slope (3,027 m) was 6.33 μ mol m-2 s-1 and mean of 5.92 μ mol m-2 s-1, SE=0.25 for the forest. Temporal distribution and variations were observed more pronounced than in the space variation. Soil respiration was found highest during March and lowest in September. Soil temperature had almost inverse trend against soil respiration and dropped a low in February and peak in July. The moisture in the soil changed across months with precipitation and pH remained almost consistent across the period. The soil respiration and soil temperature had significant relationship R2=-0.61, p=0.027 and other variables were found insignificant. Similar relationship are reported for dry season in a tropical forest soil respiration. Soil temperature was found to have most pronounced effect on the soil respiration of the forest under study.

Variations of Physical Properties Depending on the Height of Reactor in Vertical Composting Process (수직형 퇴비화공정에서 반응조 높이구간별 퇴비화물질의 물성변화에 관한 연구)

  • Kim, Yong Seong;Kim, Byung Tae;Lee, Chang Hae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.115-124
    • /
    • 2007
  • The material compressions in the vertical composting reactor affect to the biodegradation rates of the organic wastes. This study investigated the variations of physical properties of the composting materials according to the height of reactor due to affect to the settlement in the vertical composting reactor. The variations of decreased temperature after peak temperature showed the different patterns depending on the reactor heights. The variation width of re-increased temperature after peak temperature was reduced as the mixing operations were increased, and increased as the height of reactor elevated. The moisture content and the variation width of the moisture content were increased higher as the height of the reactor became higher. The variations of the bulk density at each height of vertical reactor showed the same tendency comparing with those of the moisture content. The relationship between bulk density and moisture content had shown the quadratic equation (r2=0.94). The dry solid contents at each reactor height were decreased as the height of reactor were increased. The results of the variation of the physical properties during the composting process were caused by the downward compression of the material into the reactor. Settlement rate in the vertical composting reactor was estimated about 2.184cm/day. To increase the biodegradation efficiency in the vertical reactor, the conditions of air path in the composting material matrix have to be investigated afterwards.

  • PDF

Some Physical Properties of 9-Year-Old Xylia xylocarpa Planted in Malaysia

  • Sahd, Mohd. Hamami;Josue, James;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.411-419
    • /
    • 2008
  • Xylia xylocarpa is fast-growing trees that are currently planted on trial basis in Sabah, Malaysia. The wood quality of trees grown in Sabah may differ from those grown in other places due to the environmental factors. Five 9-year-old trees of each species were extracted from their respective plots at Luasong, Tawau. Wood specimens were prepared from three height levels; bottom, middle and top, at the inner and outer radial positions. The within-tree and between-tree variations of physical properties of these species were analyzed. The basic density, oven-dry density and green moisture content(MC) are 0.72g/$cm^3$, 0.78g/$cm^3$ and 49.8% respectively. The shrinkage from green to oven-dry conditions for the radial and tangential directions were 3.35% and 5.76%, respectively. The trends of within-tree variations for most properties were more consistent in radial rather than vertical direction. This suggests diameter growth to be a more important factor contributing to the variations compared to height. Samples from the outer part of the stem were found to have higher density, shrinkage and mechanical strengths. The between-trees variations of some wood properties were found to be significantly different, probably due to genetic and micro-environmental factors. Significant correlation was recorded among the physical properties of the species. The true potential of X. xylocarpa for end-uses would be enhanced by further research such as the study on properties of wood from different sites and other properties like durability, seasoning, processing and machining characteristics. The characteristics of X. xylocarpa are comparable to a number of local popular hardwood species, indicating its suitability for heavy construction uses.

  • PDF

Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions (기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화)

  • Park, Yeo-Bin;Kim, Eui-Joo;Park, Jae-Hoon;Kim, Yoon-Seo;Park, Ji-Won;Lee, Jung-Min;You, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

Analysis of Hydrologic Geo-Spatial Information Using Runoff-Management Model (유출관리모형을 활용한 수문학적 공간정보 분석)

  • Lee, Sang-Jin;Noh, Joon-Woo;Ahn, Jung-Min;Kim, Joo-Cheol
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • GIS (Geographic Information System) is very useful in describing basin wide geographic characteristics and hydrologic analysis. This study estimated long term hydrologic variations in the Geum river basin using the SSARR rainfall runoff simulation model to provide reliable hydrologic information associated with rainfall runoff management module. Calibrated various hydrologic information such as soil moisture index, water use, direct and base flow are generated using GIS tools to display spatial hydrologic information in the unit of subbasin of target watershed. In addition, the graphic user interface toolkit designed for data compilation is expected to support efficient basin wide rainfall runoff analysis.

  • PDF

Development of a Process for Clean-Washed Rice Processing (I) - Mass Balance Analysis - (씻지 않은 쌀의 가공 공정 개발 (I) - 질량수지 분석 -)

  • 장동일;한우석;김동철;이상효
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 1999
  • This study was conducted to decide several design criterion for clean-washed rice processing system development. A Computer simulation was used to predict and analyze the mass balances and moisture changes of the process of clean-washed rice processing system. The following results were obtained from this study. 1. In order to attain the processing capacity of 1,000kg/h of the clean-washed rice processing system, that of the system was designed as 1,400kg/h which was based on the safety factor of 40% and handling capability of mass variations occurred during processing. 2. It was analyzed that the proper time required for aqueous cleaning process should be within one minute. 2. It was analyzed that the proper time required for aqueous cleaning process should be within one minute. 3. The final moisture content of clean-washed rice was controlled being 15%(w.b.) for the sake of safe storage. 4. It was proven that the optimum drying time was three minutes for the clean-washed rice dried by a rotary dryer.

  • PDF