• 제목/요약/키워드: Modulus Load Test

검색결과 283건 처리시간 0.029초

Derivation of work-hardening exponent using continuous indentation technique (연속압입시험법을 이용한 가공경화지수의 유도)

  • Jeon, Eun-Chae;Ahn, Jeong-Hoon;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.256-261
    • /
    • 2000
  • In this study, we derived work-hardening exponent using continuous indentation test technique. Continuous indentation test technique is a powerful method to evaluate mechanical properties, such as hardness, modulus, ${\sigma}-{\varepsilon}$ curves and etc. It has many merits conventional indentation test has. The relationship between true stress and mean contact pressure and between strain and indentation depth were derived. While the indenter pushes the materials, the region around the indenter is deflected elastically. It is called elastic deflection. And pile-up phenomenon related to plastic deformation around the indenter increased the contact depth, and sink-in phenomenon decreases. So we calibrated contact depth change by considering elastic deflection and pile-up/sink-in. Using calibrated contact depth we redefined the relationship between true stress and mean contact pressure and between strain and contact depth. Through these relationship we could derive work-hardening exponent by analyzing load-depth curves. And it showed good agreement with tensile test results.

  • PDF

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

Static Behavior of Concrete-Filled and Tied Steel Tubular Arch(CFTA) Girder (CFTA거더의 정적 거동연구)

  • Kim, Jong-In;Kim, Doo-kie;Lee, Jang-hyeong;Kim, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제13권3호통권55호
    • /
    • pp.225-231
    • /
    • 2009
  • This study introduces the CFTA girder(Concrete-Filled and Tied Steel Tubular Arch Girder) which is a combined structural system of traditional CFT, arch, and prestress structures. Static load tests and structural behavior analyses were carried out for a 25m long CFTA girder. In the analysis, each load of 58kN, 88kN, 148kN, 207kN,and 298kN was applied incrementally at the positions of 1.0 m distances in both directions from the center of the girder. On each test, strain and displacement were measured. Linear static FEM analyses using Strand7 code were also performed to check the structural stability and to investigate the effects of prestressing(${\pm}$20%) and material property(Young's modulus) on the displacement and strain. The results of this study are summarized as follows: the initial strain & displacement under selfweight and prestressing were influenced with the variation of prestressing, but they were mainly effected only by Young's modulus when additional loads were applied.

Airframe Structure Development of Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3 기체구조 개발)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Sang Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • 제25권3호
    • /
    • pp.35-43
    • /
    • 2017
  • Research for solar-powered high altitude long endurance(HALE) UAV was conducted by Korea Aerospace Research Institute(KARI), and the EAV-3 with 19.5m wing span was developed. For HALE flight, aircraft should be lightly designed. Especially, airframe structure that accounts for a large portion of the total weight of aircraft should be lightweight. In this paper, development process of airframe structure for solar-powered HALE UAV, EAV-3, is described briefly. Domestic developed T-800 grade CFRP(Carbon Fiber Reinforced Plastic) composite material with high modulus and strength was used to design main load carrying structures. Flightloads analysis that takes into account large structural deformation was carried out. Stress and flutter analyses for airframe structure sizing were conducted. Static strength test for main wing and aircraft ground vibration test were conducted successfully and structural integrity was secured.

Effects of Impact Loading Rate on the Delamination Behavior of Composite Laminates (복합적층판의 층간파괴에 미치는 충격하중속도의 효과)

  • Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제23권11호
    • /
    • pp.1886-1895
    • /
    • 1999
  • The delamination behavior of multidirectional carbon-fiber/epoxy composite laminates under 10NA intermediate and high rates of test, up to rate of about 11.4m s has been investigated using the double cantilever beam specimens. The mode I loading under rates above l.0m/s showed considerable dynamic effects on the load-time curves and thus higher values of the average crack velocity than that expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Based on the assumption of constant flexural modulus, values of $G_{IC}$ at the crack initiation and arrest were decreased with an increase of the test rate up to 5.7m/s, but the maximum $G_{IC}$ was increased at 11.4m/s.

Evaluation of Warm Mix Asphalt Mixtures with Foaming Technology and Additives Using New Simple Performance Testing Equipment (새로운 Simple Performance Testing 장비를 이용한 중온형 폼드 아스팔트 혼합물의 공용성 평가)

  • Kim, Yong-Joo;Im, Soo-Hyok;Lee, David;Hwang, Sung-Do
    • International Journal of Highway Engineering
    • /
    • 제10권4호
    • /
    • pp.19-29
    • /
    • 2008
  • To produce asphalt mixtures at temperature significantly below $135^{\circ}C$, called "Warm Mix Asphalt (WMA)", new technologies are currently being developed worldwide. To produce WMA mixtures in this research, foaming technology is adopted to effectively disperse asphalt binder at lower temperature than hot mix asphalt (HMA) in the field. The main objectives of this study are to develop WMA process using foaming technology (WMA-foam) and evaluate its performance characteristics under various temperatures and loading conditions. WMA-foam mixtures were produced by injecting PO 64-22 foamed asphalt into warm aggregates whereas WMA mixtures were produced by adding PO 64-22 asphalt (without foaming) in the warm aggregates. Both dynamic modulus and flow number of WMA-foam mixtures were higher than those of WMA mixtures. Based on the limited dynamic modulus and repeated load test results, it is concluded that the WMA-foam mixtures using warm aggregates at $100^{\circ}C$ are more resistant to fatigue cracking and rutting than WMA mixtures.

  • PDF

Physical and Mechanical Properties of Expanded Polystyrene Bead Concrete (팽창 폴리스틸렌 비드 콘크리트의 물리.역학적 특성)

  • 민정기;김성완;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제38권6호
    • /
    • pp.83-95
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, main purpose of this study was to establish the physical and mechanical properties of lightweight concrete using expanded polystyrene bead on fine aggregate and natural gravel, expanded clay and pumice stone on coarse aggregate. The test rusults of this study are summarized as follows; 1. The water-cement ratio of concrete using pumice stone was larger than that of the concrete using natural gravel and expanded clay. 2. The unit weights of concrete using pumice stone and expanded caly were shown less than 1,000g/$m^3$. 3. The compressive strengths of all types were shown less than 60kg/$cm^2$, tensile and bending strengths were shown less than l3kg/$cm^2$ and 3lkg/$cm^2$$^2$, respectively. 4. The pulse velocity of concrete was shown similar with using natural gravel and pumice stone, and shown the lowest using pumice stone. 5. The dynamic modulus of elasticity of concrete was shown considerably smaller, and shown the lowest using pumice stone. 6. The static modulus of elasticity of concrete using expanded clay and pumice stone were shown considerably smaller, and shown 22% ~29% as compared with the dynamic modulus of elasticity. 7. The stress-strain curves of concrete were shown similar, generally. And the curves were repeated at short intervals increase and decreased irregularly.

  • PDF

Tribological Behaviors on nano-structured surface of the diamond-like carbon (DLC) coated soft polymer

  • No, Geon-Ho;Mun, Myeong-Un;Ahmed, Sk.Faruque;Cha, Tae-Gon;Kim, Ho-Yeong;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.356-356
    • /
    • 2010
  • Tribological behaviors of the hard film on soft substrate system were explored using the hard thin film of diamond-like carbon (DLC) coated the soft polymer of polydimethysiloxane (PDMS). A DLC film with the Young's modulus of 100 GPa was coated on PDMS substrate with Young's modulus of 10 MPa using plasma enhanced chemical vapor deposition (PECVD) technique. The deposition time was varied from 10 sec to 10 min, resulting in nanoscale roughness of wrinkle patterns with the thickness of 20 nm to 510 nm, respectively, at a bias voltage of $400\;V_b$, working pressure 10 mTorr. Nanoscale wrinkle patterns with 20-100 nm in width and 10-30 nm height were formed on DLC coating due to the residual stress in compression and difference in Young's modulus. Nanoscale roughness effect on tribological behaviors was observed by performing a tribo-experiment using the ball-on-disk type tribometer with a steel ball of 6 mm in diameter at the sliding speed of 220 rpm, normal load of 1N and 25% humidity at ambient temperature of $25^{\circ}C$. Friction force were measured with respect to thickness change of coated DLC thin film on PDMS. It was found that with increases the thickness of DLC coating on PDMS, the coefficient of friction decreased by comparison to that of the uncoated PDMS. The wear tracks before and after tribo-test were analyzed using SEM and AFM.

  • PDF

Elastic Modulus and Layer Coefficient of Permeable Block Pavements Based on Plate Load Tests (평판재하시험을 통한 투수 블록포장의 탄성계수 및 상대강도계수 산정)

  • Choi, Yong-Jin;Oh, Jeong-Ho;Han, Shin-In;Ahn, Jaehun;Shin, Hyun-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • 제33권12호
    • /
    • pp.75-80
    • /
    • 2017
  • Permeable block pavement systems are widely used to relieve the flood and enhance water circulation. However, domestic design method has not yet been established well. Although AASHTO 93 flexible pavement design method is applied as a structural design method outside the country, there is a lack of information on layer coefficient of the permeable pavement materials, which makes it difficult to apply the design to various materials. Therefore, in this study, a method of calculating the layer coefficient of permeable block pavement materials by plate load test was presented and the layer coefficient of a permeable block pavement in a testbed was evaluated. Overall, calculated layer coefficient of open graded aggregate and permeable block pavement surface layer were similar to those of the conventional values. The presented method may be used to evaluate layer coefficients of permeable block pavements for design.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.