• Title/Summary/Keyword: Module design

Search Result 4,035, Processing Time 0.028 seconds

A Study of the Design for the Topside Module Support Structure of an Offshore Floater (해양 플로터 상부모듈 지지구조의 설계에 관한 연구)

  • Song, Myung-Keun;Jang, Beom-Seon;Ko, Dae-Eun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.53-58
    • /
    • 2010
  • Offshore floater such as FPSO, drillship is composed of topside and hull side, and the interface structure is called topside module support. In this study, practical considerations were investigated for the design of topside module supports, from the concept design stage to the final stage of structural determination, in view of design efficiency and construction productivity. The effects of welding design factors of topside module support, such as welding throat thickness, sectional welding area, and welding man-hours, were compared and analyzed closely with respect to productivity. The current status and problems regarding the application of deep or full penetration welding are discussed, and a direct-calculation method is suggested as a possible solution to these problems.

An implementation of the hybrid SoC for multi-channel single tone phase detection (다채널 단일톤 신호의 위상검출을 위한 Hybrid SoC 구현)

  • Lee, Wan-Gyu;Kim, Byoung-Il;Chang, Tae-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.388-390
    • /
    • 2006
  • This paper presents a hybrid SoC design for phase detection of single tone signal. The designed hybrid SoC is composed of three functional blocks, i.e., an analog to digital converter module, a phase detection module and a controller module. A design of the controller module is based on a 16-bit RISC architecture. An I/O interface and an LCD control interface for transmission and display of phase measurement values are included in the design of the controller module. A design of the phase detector is based on a recursive sliding-DFT. The recursive architecture effectively reduces the gate numbers required in the implementation of the module. The ADC module includes a single-bit second-order sigma-delta modulator and a digital decimation filter. The decimation filter is designed to give 98dB of SNR for the ADC. The effective resolution of the ADC is enhanced to 98dB of SNR by the incorporation of a pre FIR filter, a 2-stage cascaded integrator- comb(CIC) filter and a 30-tab FIR filter in the decimation. The hybrid SoC is verified in FPGA and implemented in 0.35 CMOS Technology.

  • PDF

Thermal Analysis for Improvement of Heat Dissipation Performance of the Rail Anchoring Failure Detection Module (레일 체결구 결함 검측 모듈의 방열성능 개선을 위한 열 해석)

  • Chae, Won kyu;Park, Young;Kwan, Sam young;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, various heat dissipation designs for a rail anchoring failure detection module were investigated by a thermal flow analysis. For the detection module with the heat dissipation design on the overall housing surface, an average temperature inside the module was lowered by $25^{\circ}C$ when compared to no heat dissipation design. In addition, an internal heat-flow blocking layer and an heat conduction layer inserted between the LED module and housing case were effective in reducing the temperature in the rail anchoring failure detection, which has a limited space for installation and little air flow. Especially, the temperature near LED module decreased below $55^{\circ}C$ when the optimal heat dissipation design was applied.

Analysis of Head Impact Test of the Passenger Air-Bag Module Assembly by LS-DYNA Explicit Code (LS-DYNA를 이용한 자동차 승객용 에어백 모듈의 헤드 충격 해석)

  • Kim, Moon-Saeng;Lim, Dong-Wan;Lee, Joon-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.88-94
    • /
    • 2006
  • In this study, the dynamic impact analysis for the passenger air-bag(PAB) module has been carried out by using FEM to predict the dynamic characteristics of vehicle ride safety against head impact. The impact performance of vehicle air-bag is directly related to the design parameters of passenger air-bag module assembly, such as the tie bar bracket's width and thickness, respectively, However, the product's design of PAB module parameters are estimated through experimental trial and error according to the designer's experience, generally. Therefore, the dynamic analysis of head impact test of the passenger air-bag module assembly of automobile is needed to construct the analytical methodology At first, the FE models, which are consist of instrument panel, PAB Module, and head part, are combined to the whole module system. Then, impact analysis is carried out by the explicit solution procedure with assembled FE model. And the dynamic characteristics of the head impact are observed to prove the effectiveness of the proposed method by comparing with the experimental results. The better optimized impact performance characteristics is proposed by changing the tie bracket's width md thickness of module. The proposed approach of impact analysis will provides an efficient vehicle to improve the design quality and reduce the design period and cost. The results reported herein will provide a better understanding of the vehicle dynamic characteristics against head impact.

Systematization of Module Design Principle for Recycling (자원 재활용을 위한 모듈 설계 원칙의 체계화)

  • 목학수;양태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.969-971
    • /
    • 2000
  • In this paper, shortening of product life cycle and wide disposal of consumer product have given rise to many environmental problems, it needs to propose module design principle for saving of disassembly cost and reusing of used part and subassembly. To analyze characteristics of module for recycling, materials and function of part and subassembly must be classified. In disassembly process, a unit operation can be grasped for disassembly function, worker, tool and sorting process. As a result of applying module design principle, simpler structure and reduced structural interference can be realized for product structure. For disassembly, simpler disassembly and quicker disassembly can be obtained for recycling.

  • PDF

Usability Test Analysis on Integrated Automotive Cockpit Module System (자동차 전장 통합 모듈 시스템에서의 사용성 평가)

  • 홍성만;박범
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.237-245
    • /
    • 2003
  • More and more many people show a keen interest in the ergonomics application car. One of the recent trends of cockpit development is to integrate fore part of whole cockpit and compartment. The goal of this study is to develop and Analysis of User's Convenience a cockpit prototype based on the design guide of cockpit integration module. The process of this study has been followed analyzing development trend of next generation Automotive cockpit, extracting the design factor needed to making integration module and laying down the design guide of cockpit integration module. Finally, this study is indicate an instance that evaluation of utilization with Integrated Automotive Cockpit Module System.

  • PDF

Design of Dead-end Membrane Module with Increased Permeate Flux by Natural Convection Instability Flow (자연대류 불안정 흐름에 의해 투과량을 증가시킨 전량여과 막모듈의 설계)

  • Kim, Gi-Jun;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.147-154
    • /
    • 2019
  • The permeate flux increments of a natural convection instability flow (NCIF) caused by the change of inclined angles ($0{\sim}180^{\circ}$) to gravity of the commercial membrane module were tested in the dead-end membrane filtration of BSA protein solution. The NCIF are more generated as the inclined angle increased from $0^{\circ}$ to $180^{\circ}$, and the occurred NCIF enhances permeate flux. However, the commercial module can only generate NCIF by completely removing the air gap in module. Since the custom design module designed in this study is permeated in a crossward direction ($90^{\circ}$), NCIF is always generated even if there is the air gap in module. The results of membrane filtration of BSA and dextran solutions using a custom design module showed that the flux in the crossward direction is increased to about 3.8 times for BSA solution and 1.8 times for dextran solution after two hours of operation due to the occurrence of NCIF. Also, NCIF generation is continued during 20 hours filtration of BSA solution, increasing the permeate flux to about 7.5 times. Since the custom design module with a permeation in the crossward direction and NCIF is always generated within the module, so it is possible to expect an increase in permeate flux due to the suppression of fouling formation, and thus to be utilized as a superb dead-end membrane module.

A Study on the Rx/Tx Switch Module with integrated Low Pass Filter (LPF가 집적화된 Rx/Tx 스위치 모듈에 관한 연구)

  • Song Jae-Sung;Min Bok-Ki;Jeong Soon-Jong;Kim In-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.185-189
    • /
    • 2005
  • This paper focuses on the design for Rx/Tx switch module of GSM(global standard mobile) band, characterization of a miniature, low power and dual-band implementation of the front-end switch module with low-pass filer And the effort to make agreement between the simulated design and the measured data for these solutions takes the place through accumulated design and manufacturing data library. We present the design, modeling and measurement of switch module integrating GSM Rx/Tx switching circuit and LPF(low pass filter) on a LTCC(low temperature co-fired ceramic) substrate. For GSM application, insertion and return loss of the low pass filter designed was less than 0.3 dB which was less than 12.7 dB at 900 MHz. The LTCC switch module contained 10 embedded passives and 3 surface mount components integrated on 4.6$\times$4.8$\times$1.2 mm, 6-layer multi-layer integrated circuit. The insertion loss of switch module measured at 900 MHz was 11 dB. In both of the design approach yielded excellent agreement between measured and simulated results.

Computer-Aided Process Planning System of Cold Forging and its Verification by F.E. Simulation (냉간단조 공정설계 시스템과 유한요소해석에 의한 검증)

  • Lee, E.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • This paper describes interactive computer procedures for design the forming sequences in cold forging. This system is implemented on the personal computer and its environment is a commercial AutoCAD system. The programming language. AutoLISP, was used for the configuration of the system. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the part is a key in process planning. To recognize the part section geometry, the section entity representation, the section coordinate-redius representation and the section primitive geometru were adopted. This system includes six major modules such as input module, forging design module, forming sequence design module, die design module, FEM verification module and output module which are used independently or in all. The sequence drawing wigh all dimensions, which includes the dimensional tolerances and the proper sequence of operations, can generate under the environment of AutoCAD. The acceptable forming sequences can be verified further, using the FE simulation.

  • PDF

Design and Implementation of DMA priority section module (DMA Priority selection module 설계 및 구현)

  • Hwang, In-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.264-267
    • /
    • 2002
  • This paper proposed a effective priority selection algorithm named weighted round-robin algorithm and show the implementation result of DMAC priority selection module using prosed weighted round-robin algorithm. I parameterize timing constraints of each functional module, which decide the effectiveness of system. Proposed weighted round-robin algorithm decide the most effective module for data transmission using parameterize timing constraints and update timing parameter of each module for next transmission module selection. I implement DMAC priority selection module using this weighted round-robin algorithm and can improve the timing effective for data transmission from memory to functional module or one functional module to another functional module.

  • PDF