• 제목/요약/키워드: Module cell

검색결과 738건 처리시간 0.027초

Correlation between Reverse Voltage Characteristics and Bypass Diode Operation with Different Shading Conditions for c-Si Photovoltaic Module Package

  • Lim, Jong-Rok;Min, YongKi;Jung, Tae-Hee;Ahn, Jae-Hyun;Ahn, Hyung-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.577-584
    • /
    • 2015
  • A photovoltaic (PV) system generates electricity by installing a solar energy array; therefore, the photovoltaic system can be easily exposed to external factors, which include environmental factors such as temperature, humidity, and radiation. These factors-as well as shading, in particular-lead to power degradation. When there is an output loss in the solar cell of a PV module package, the output loss is partly controlled by the bypass diode. As solar cells become highly efficient, the characteristics of series resistance and parallel resistance improve, and the characteristics of reverse voltage change. A bypass diode is connected in parallel to the string that is connected in series to the PV module. Ideally, the bypass diode operates when the voltage is -0.6[V] around. This study examines the bypass diode operating time for different types of crystalline solar cells. It compares the reverse voltage characteristics between the single solar cell and polycrystalline solar cell. Special modules were produced for the experiment. The shading rate of the solar cell in the specially made solar energy module was raised by 5% each time to confirm that the bypass diode was operating. The operation of the bypass diode is affected not only by the reverse voltage but also by the forward bias. This tendency was verified as the number of strings increased.

A New type $1.0\;mm\;{\times}\;0.5mm$ Light Emitting Diode using AlInGaN cell structure and Its Display Module

  • Park, Book-Sung;Kim, Sung-Woon;Lee, Seon-Gu;Son, Sung-Il;Kim, Eun-Tae;Kim, Chul-Ju
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.557-560
    • /
    • 2008
  • The main goal of this work is to fabricate light emitting diode (LED) module and apply it to mobile handset. We first fabricated the blue-color LED based on the AlInGaN cell structure with size of $200\;{\mu}m\;{\times}\;200\;{\mu}m$. Also we proposed a new $1.0\;mm\;{\times}\;0.5\;mm$ (1005size) packaging procedure for the LED cell. Thus the overall dimension of our LED cell was as small as $1.0\;mm\;{\times}\;0.5\;mm\;{\times}\;0.4\;mm$ ($W\;{\times}\;L\;{\times}\;T$). As far as we knew it was the first time that this small LED cell dimension had been fabricated and operated.

  • PDF

온도에 따른 PV모듈의 출력에 영향을 미치는 요소 분석 (Analysis of Factor on the Temperature Effect on the Output of PV Module)

  • 임종록;우성철;정태희;민용기;원창섭;안형근
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.365-370
    • /
    • 2013
  • Generally, photovoltaic modules consist of glass, EVA, Solar Cell, back sheet and ribbon. But EVA, solar cell, ribbon affect electric output with temperature. EVA is a change in the transmittance of light from the sun. In addition, the solar cell output is decreased with temperature and the ribbon increases resistance. Transmittance and reflectance of glass and EVA were measured. In this paper, the characteristics of the components of PV module as EVA and Glass, ribbon were studied by variable temperature. effects on material properties investigated. As a result, glass is independent in temperature variation. EVA was the reduction 1~4% in transmittance. Solar cell decrease 0.469[%/$^{\circ}C$] in electric output by temperature variation. Other factors was controlled in solar cell..

열전소자 온도조절법을 이용한 결정형 실리콘 태양전지의 성능 측정 (Performance of Crystalline Si Solar Cells with Temperature Controlled by a Thermoelectric Module)

  • 허기무;이대호;이재헌
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.375-379
    • /
    • 2015
  • A proper estimate of solar cell efficiency is of great importance for the feasibility analysis of solar cell power plant development. Since solar cell efficiency depends on temperature, several methods have been introduced to measure it by operating temperature modulation. However, the methods either rely on the external environment or need expensive equipment. In this paper, a thermoelectric module was used to control the operating temperature of crystalline silicon solar cells effectively and precisely over a wide range. The output characteristics of crystalline silicon solar cells in response to operating temperatures from $-5^{\circ}C$ to $100^{\circ}C$ were investigated experimentally. Their efficiencies decreased as the temperature rose, since the decrease in the open circuit voltage and fill factor exceeded the increase in the short circuit current. The maximum power temperature coefficient of the single crystalline solar cell was more sensitive to temperature change than that of the polycrystalline solar cell.

Development of a Novel Cell Surface Attachment System to Display Multi-Protein Complex Using the Cohesin-Dockerin Binding Pair

  • Ko, Hyeok-Jin;Song, Heesang;Choi, In-Geol
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1183-1189
    • /
    • 2021
  • Autodisplay of a multimeric protein complex on a cell surface is limited by intrinsic factors such as the types and orientations of anchor modules. Moreover, improper folding of proteins to be displayed often hinders functional cell surface display. While overcoming these drawbacks, we ultimately extended the applicability of the autodisplay platform to the display of a protein complex. We designed and constructed a cell surface attachment (CSA) system that uses a non-covalent protein-protein interaction. We employed the high-affinity interaction mediated by an orthogonal cohesin-dockerin (Coh-Doc) pair from Archaeoglobus fulgidus to build the CSA system. Then, we validated the orthogonal Coh-Doc binding by attaching a monomeric red fluorescent protein to the cell surface. In addition, we evaluated the functional anchoring of proteins fused with the Doc module to the autodisplayed Coh module on the surface of Escherichia coli. The designed CSA system was applied to create a functional attachment of dimeric α-neoagarobiose hydrolase to the surface of E. coli cells.

음영효과를 고려한 a-Si PV모듈의 출력 변화 및 최적 설계조건에 관한 연구 (Analysis of Power Variation and Design Optimization of a-Si PV Modules Considering Shading Effect)

  • 신준오;정태희;김태범;강기환;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.102-107
    • /
    • 2010
  • a-Si solar cell has relatively dominant drift current when compared with crystalline solar cell due to the high internal electric field. Such drift current make an impact on the PV module in the local shading. In this paper, the a-Si PV module output characteristics of shading effects was approached in terms of process condition, because of the different deposition layer of thin film lead to rising the resistance. We suggested design condition to ensure the long-term durability of the module with regard to the degradation factors such as hot spot by analyzing the module specification. The result shows a remarkable difference on module uniformity for each shading position. In addition, the unbalanced power loss due to power mismatch of each module could intensify the degradation.

공장 자동화를 위한 지능 생산 시스템 개발에 관한 연구 (Study of Intelligent Manufacturing System Development for Factory Automation)

  • Park, K.H.
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.126-136
    • /
    • 1997
  • This paper describes a task level cell programming environment that deals with difficulties in programming Flexible Manufacturing Cells (FMCs), and consists of the cell programming editor and the automatic generation module. In the cell programming editor, cell programs can be developed with task- oriented cell specifications that reduces the amount of details to be considered by cell programmers. The automatic generation module transforms task specifications into executable programs used by cell constituents. The development tool in designing the environment is an object-oriented approach which provides a simple to use and intuitive user interface, and allows for an easy development of object models associated with the environment. Test results are illustrated in order to demonstrate the applicability of the developed envifonment.

  • PDF

유무연 용융도금 리본에 따른 결정질 실리콘 태양전지 모듈 열화거동 (Degradation Behavior of Eutectic and Pb-free Solder Plated Ribbon in Crystalline Silicon Photovoltaic Module)

  • 김주희;김아영;박노창;하정원;이상권;홍원식
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.75-81
    • /
    • 2014
  • Usage of heavy metal element (Pb, Hg and Cd etc.) in electronic devices have been restricted due to the environmental banning of the European Union, such as WEEE and RoHS. Therefore, it is needed to develop the Pb-free solder plated ribbon in photovoltaic (PV) module. This study described that degradation characteristics of PV module under damp heat (DH, $85^{\circ}C$ and 85% R.H.) condition test for 1,000 h. Solar cell ribbons were utilized to hot dipping plate with Pb-free solder alloys. Two types of Pb-free solder plated ribbons, Sn-3.0Ag-0.5Cu (SAC305) and Sn-48Bi-2Ag, and an electroless Sn-40Pb solder hot dipping plated ribbon as a reference sample were prepared to evaluate degradation characteristics. To detect the degradation of PV module with the eutectic and Pb-free solder plated ribbons, I-V curve, electro-luminescence (EL) and cross-sectional SEM analysis were carried out. DH test results show that the reason of maximum power (Pm) drop was mainly due to the decrease fill factor (FF). It was attributed to the crack or oxidation of interface between the cell and the ribbon. Among PV modules with the eutectic and Pb-free solder plated ribbon, the PV module with SAC305 ribbon relatively showed higher stability after DH test than the case of PV module with Sn-40Pb and Sn-48Bi-2Ag solder plated ribbons.

태양광 모듈 오염 방지를 위한 발수 코팅 물질에 대한 연구 (Research on Water-Repellent Coating Materials to Prevent Solar Module Pollution )

  • 박영아;정다연;기현철
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.182-187
    • /
    • 2024
  • Currently, the most developed new energy source is solar energy. Because solar power is installed outside, it is exposed to many pollutants. Pollutants are causing the characteristics of solar energy to deteriorate. Therefore, this study aims to develop a water-repellent coating to prevent contamination of solar modules. Silica and Titania materials are mainly used as water-repellent coating materials. In this study, it was based on silica and the contact angle characteristics were measured according to the change in the amount of silica and ammonia water added and the number of coatings. As a result of the measurement, it was confirmed that the contact angle was more than 60 degrees when 0.5 mol of TEOS was added to 50 mL and 0.15 M when 1 mL of ammonia water was added to 296.47 ml of distilled water. And it was confirmed that the contact angle improved when the number of coatings was applied twice. A water-repellent coating material was applied to low iron tempered glass used to protect dye-sensitized solar cell modules. The characteristics of the module were measured after spraying DI-Water on low-emission tempered glass with a water-repellent coating. As a result of the measurement, the efficiency of the module without application, the efficiency of the module coated once, and the module coated twice were 4.87%, 4.90%, and 4.91%, respectively. It was confirmed that the efficiency of the module increased by applying water-repellent coating. As a result of this study, it is determined that the water-repellent coating material will help improve solar power generation efficiency and lifespan by being self-cleaning and non-reflective.

리본 두께에 따른 태양전지 Bowing현상 연구 (A Study on Bow of Silicon Solar Cell by Soldering Different Thickness of Ribbon)

  • 윤나리;정태희;신준오;강기환;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.68-68
    • /
    • 2010
  • To reduce PV manufacturing costs, the thickness of solar cell is getting thinner. Bow is shown after cooling down the temperature of solder cell. It happens because of different thermal expansion coefficients of different metals. Bowed cell can make micro crack while module processing and it can drop off efficiency of PV module. As thinner solar cell is produced, the thickness of ribbon should be concerned to prevent extra bow. In this paper we investigate the contrast of deflection when we solder different thickness of ribbons on same solar cell. This approach would help to find out the optical thickness of ribbon for particular thickness of solar cell later on.

  • PDF