• 제목/요약/키워드: Modulation of transcription

검색결과 118건 처리시간 0.029초

Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes

  • Kim, Hyo Jung;Yoon, Bo Kyung;Park, Hyounkyoung;Seok, Jo Woon;Choi, Hyeonjin;Yu, Jung Hwan;Choi, Yoonjeong;Song, Su Jin;Kim, Ara;Kim, Jae-woo
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.111-115
    • /
    • 2016
  • Caffeine has been proposed to have several beneficial effects on obesity and its related metabolic diseases; however, how caffeine affects adipocyte differentiation has not been elucidated. In this study, we demonstrated that caffeine suppressed 3T3-L1 adipocyte differentiation and inhibited the expression of CCAAT/enhancer binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ, two main adipogenic transcription factors. Anti-adipogenic markers, such as preadipocyte secreted factor (Pref)-1 and Krüppel-like factor 2, remained to be expressed in the presence of caffeine. Furthermore, 3T3-L1 cells failed to undergo typical mitotic clonal expansion in the presence of caffeine. Investigation of hormonal signaling revealed that caffeine inhibited the activation of AKT and glycogen synthase kinase (GSK) 3 in a dose-dependent manner, but not extracellular signal-regulated kinase (ERK). Our data show that caffeine is an anti-adipogenic bioactive compound involved in the modulation of mitotic clonal expansion during adipocyte differentiation through the AKT/GSK3 pathway.

Modulation of Nrf2/ARE and Inflammatory Signaling Pathways by Hericium erinaceus Mycelia Extract

  • Jin, Kyong-Suk;Park, Ji-Young;Cho, Mi-Kyung;Jang, Ji-Hyun;Jeong, Jae-Han;Ok, Seon;Bak, Min-Ji;Song, Young-Sun;Kim, Myo-Jeong;Cho, Chung-Won;Jeong, Woo-Sik
    • Food Science and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.1204-1211
    • /
    • 2009
  • Hericium erinaceus is an edible mushroom used as a medicinal food in Asian countries. In this study, the chemopreventive effects of H. erinaceus mycelia hot water extract (HEW) were evaluated. HEW remarkably induced the luciferase activity of the antioxidant response element (ARE), located in the promoter region of phase 2 and antioxidant genes and regulated by nuclear factor E2-related factor 2 (Nrf2). The up-regulation of ARE activity by HEW corresponded with the induction of Nrf2 and the antioxidant enzyme, hemeoxygenase-1. The inhibition of cyclooxygenase-2 (COX-2) activity is a promising effective approach in cancer chemoprevention, and HEW prominently suppressed COX-2 protein expression in HepG2 cells. Furthermore, HEW showed anti-inflammatory activity by modulating inflammatory mediators such as nitric oxide (NO), inducible NO synthase, tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$, and the transcription factor, nuclear factor-${\kappa}B$, in lipopolysaccharide-stimulated RAW 264.7 cells. These results suggest that H. erinaceus possessed anti-tumor and anti-inflammatory effects via the modulation of Nrf2/ARE and inflammatory signaling pathways, and may therefore have potential use as a natural chemopreventive agent.

WD Repeat Domain 1 Deficiency Inhibits Neointima Formation in Mice Carotid Artery by Modulation of Smooth Muscle Cell Migration and Proliferation

  • Hu, JiSheng;Pi, ShangJing;Xiong, MingRui;Liu, ZhongYing;Huang, Xia;An, Ran;Zhang, TongCun;Yuan, BaiYin
    • Molecules and Cells
    • /
    • 제43권8호
    • /
    • pp.749-762
    • /
    • 2020
  • The migration, dedifferentiation, and proliferation of vascular smooth muscle cells (VSMCs) are responsible for intimal hyperplasia, but the mechanism of this process has not been elucidated. WD repeat domain 1 (WDR1) promotes actin-depolymerizing factor (ADF)/cofilin-mediated depolymerization of actin filaments (F-actin). The role of WDR1 in neointima formation and progression is still unknown. A model of intimal thickening was constructed by ligating the left common carotid artery in Wdr1 deletion mice, and H&E staining showed that Wdr1 deficiency significantly inhibits neointima formation. We also report that STAT3 promotes the proliferation and migration of VSMCs by directly promoting WDR1 transcription. Mechanistically, we clarified that WDR1 promotes the proliferation and migration of VSMCs and neointima formation is regulated by the activation of the JAK2/STAT3/WDR1 axis.

TonEBP suppresses adipocyte differentiation via modulation of early signaling in 3T3-L1 cells

  • Kim, Soo Jin;Kim, Taehee;Choi, Han Na;Cho, Eun Jung;Park, Jin Bong;Jeon, Byeong Hwa;Lee, Sang Do
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.649-655
    • /
    • 2016
  • TonEBP belongs to the Rel family of transcription factors and plays important roles in inflammation as well as kidney homeostasis. Recent studies suggest that TonEBP expression is also involved in differentiation of several cell types such as myocytes, chondrocytes, and osteocytes. In this study, we investigated the roles of TonEBP during adipocyte differentiation in 3T3-L1 cells. TonEBP mRNA and protein expression was dramatically reduced during adipocyte differentiation. Sustained expression of TonEBP using an adenovirus suppressed the formation of lipid droplets as well as the expression of FABP4, a marker of differentiated adipocytes. TonEBP also inhibited the expression of $PPAR{\gamma}$, a known master regulator of adipocytes. RNAi-mediated knock down of TonEBP promoted adipocyte differentiation. However, overexpression of TonEBP did not affect adipogenesis after the initiation of differentiation. Furthermore, TonEBP expression suppressed mitotic clonal expansion and insulin signaling, which are required early for adipocyte differentiation of 3T3-L1 cells. These results suggest that TonEBP may be an important regulatory factor in the early phase of adipocyte differentiation.

Lysate of Probiotic Lactobacillus plantarum K8 Modulate the Mucosal Inflammatory System in Dextran Sulfate Sodium-induced Colitic Rats

  • Ahn, Young-Sook;Park, Min Young;Shin, Jae-Ho;Kim, Ji Yeon;Kwon, Oran
    • 한국축산식품학회지
    • /
    • 제34권6호
    • /
    • pp.829-835
    • /
    • 2014
  • Inflammatory bowel disease (IBD) is caused by dysregulation of colon mucosal immunity and mucosal epithelial barrier function. Recent studies have reported that lipoteichoic acid (LTA) from Lactobacillus plantarum K8 reduces excessive production of pro-inflammatory cytokine. In this study, we investigated the preventive effects of lysate of Lb. plantarum K8 in dextran sulfate sodium (DSS)-induced colitis. Male Sprague-Dawley rats were orally pretreated with lysate of Lb. plantarum K8 (low dose or high dose) or live Lb. plantarum K8 prior to the induction of colitis using 4% DSS. Disease progression was monitored by assessment of disease activity index (DAI). Histological changes of colonic tissues were evaluated by hematoxylin and eosin (HE) staining. Tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA). The colon mRNA expressions of TNF-${\alpha}$, IL-6, and toll like receptor-2 (TLR-2) were examined by quantitative real-time-transcription polymerase chain reaction (qPCR). Lysate of Lb. plantarum K8 suppressed colon shortening, edema, mucosal damage, and the loss of DSS-induced crypts. The groups that received lysate of Lb. plantarum K8 exhibited significantly decreased levels of the pro-inflammatory cytokines TNF-${\alpha}$ and IL-6 in the colon. Interestingly, colonic expression of toll like receptor-2 mRNA in the high-dose lysate of Lb. plantarum K8 group increased significantly. Our study demonstrates the protective effects of oral lysate of Lb. plantarum K8 administration on DSS-induced colitis via the modulation of pro-inflammatory mediators of the mucosal immune system.

Differences in liver microRNA profiling in pigs with low and high feed efficiency

  • Miao, Yuanxin;Fu, Chuanke;Liao, Mingxing;Fang, Fang
    • Journal of Animal Science and Technology
    • /
    • 제64권2호
    • /
    • pp.312-329
    • /
    • 2022
  • Feed cost is the main factor affecting the economic benefits of pig industry. Improving the feed efficiency (FE) can reduce the feed cost and improve the economic benefits of pig breeding enterprises. Liver is a complex metabolic organ which affects the distribution of nutrients and regulates the efficiency of energy conversion from nutrients to muscle or fat, thereby affecting feed efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed efficiency through the modulation of gene expression at the post-transcriptional level. In this study, we analyzed miRNA profiling of liver tissues in High-FE and Low-FE pigs for the purpose of identifying key miRNAs related to feed efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs indicated that the target genes of DE miRNAs were significantly enriched in insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and mammalian target of rapamycin signaling pathway. To verify the reliability of sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs were confirmed to be consistent with sequencing data. DE miRNA data indicated that liver-specific miRNAs synergistically acted with mRNAs to improve feed efficiency. The liver miRNAs expression analysis revealed the metabolic pathways by which the liver miRNAs regulate pig feed efficiency.

Down-modulation of Bis reduces the invasive ability of glioma cells induced by TPA, through NF-κB mediated activation of MMP-9

  • Lee, Young Dae;Cui, Mei Nu;Yoon, Hye Hyeon;Kim, Hye Yun;Oh, Il-Hoan;Lee, Jeong-Hwa
    • BMB Reports
    • /
    • 제47권5호
    • /
    • pp.262-267
    • /
    • 2014
  • Bcl-2 interacting cell death suppressor (Bis) has been shown to have anti-apoptotic and anti-stress functions. Recently, increased Bis expression was reported to correlate with glioma aggressiveness. Here, we investigated the effect of Bis knockdown on the acquisition of the invasive phenotype of A172 glioma cells, induced by 12-O-Tetradecanoylphorbol-3-acetate (TPA), using a Transwell assay. Bis knockdown resulted in a significant decrease in the migration and invasion of A172 cells. Furthermore, Bis knockdown notably decreased TPA-induced matrix metalloproteinase-9 (MMP-9) activity and mRNA expression, as measured by zymography and quantitative real time PCR, respectively. A luciferase reporter assay indicated that Bis suppression significantly down-regulated NF-${\kappa}B$-driven transcription. Finally, we demonstrated that the rapid phosphorylation and subsequent degradation of $I{\kappa}B-{\alpha}$ induced by TPA was remarkably delayed by Bis knockdown. These results suggest that Bis regulates the invasive ability of glioma cells elicited by TPA, by modulating NF-${\kappa}B$ activation, and subsequent induction of MMP-9 mRNA.

Oxidative Stress Induces Hypomethylation of LINE-1 and Hypermethylation of the RUNX3 Promoter in a Bladder Cancer Cell Line

  • Wongpaiboonwattana, Wikrom;Tosukhowong, Piyaratana;Dissayabutra, Thasinas;Mutirangura, Apiwat;Boonla, Chanchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3773-3778
    • /
    • 2013
  • Increased oxidative stress and changes in DNA methylation are frequently detected in bladder cancer patients. We previously demonstrated a relationship between increased oxidative stress and hypomethylation of the transposable long-interspersed nuclear element-1 (LINE-1). Promoter hypermethylation of a tumor suppressor gene, runt-related transcription factor 3 (RUNX3), may also be associated with bladder cancer genesis. In this study, we investigated changes of DNA methylation in LINE-1 and RUNX3 promoter in a bladder cancer cell (UM-UC-3) under oxidative stress conditions, stimulated by challenge with $H_2O_2$ for 72 h. Cells were pretreated with an antioxidant, tocopheryl acetate for 1 h to attenuate oxidative stress. Methylation levels of LINE-1 and RUNX3 promoter were measured by combined bisulfite restriction analysis PCR and methylation-specific PCR, respectively. Levels of LINE-1 methylation were significantly decreased in $H_2O_2$-treated cells, and reestablished after pretreated with tocopheryl acetate. Methylation of RUNX3 promoter was significantly increased in cells exposed to $H_2O_2$. In tocopheryl acetate pretreated cells, it was markedly decreased. In conclusion, hypomethylation of LINE-1 and hypermethylation of RUNX3 promoter in bladder cancer cell line was experimentally induced by reactive oxygen species (ROS). The present findings support the hypothesis that oxidative stress promotes urothelial cell carcinogenesis through modulation of DNA methylation. Our data also imply that mechanistic pathways of ROS-induced alteration of DNA methylation in a repetitive DNA element and a gene promoter might differ.

Antiviral Potential of the Genus Panax: An updated review on their effects and underlying mechanism of action

  • Yibo Zhang;Xuanlei Zhong;Zhichao Xi;Yang Li;Hongxi Xu
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.183-192
    • /
    • 2023
  • Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.

Induction of Bone Morphogenetic Protein-2 from Gingival Epithelial Cells by Oral Bacteria

  • Kim, Young-Sook;Ji, Suk;Jung, Hong-Moon;Woo, Kyung-Mi;Choi, Young-Nim
    • International Journal of Oral Biology
    • /
    • 제32권3호
    • /
    • pp.103-107
    • /
    • 2007
  • We hypothesized that plaque-associated bacteria may have a role in maintenance of alveolar bone. To test it, immortalized gingival epithelial HOK-16B cells were co-cultured with live or lysed eight plaque bacterial species and the expression levels of bone morphogenetic protein (BMP)-2 and -4 were examined by real time reverse transcription-polymerase chain reaction. Un-stimulated HOK-16B cells expressed both BMP-2 and -4. Co-culture with plaque bacterial lysates had significant effects on the level of BMP-2 but not on that of BMP-4. Five species including Streptococcus sanguinis, S. gordonii, Veillonella atypica, Porphyromonas gingivalis, and Treponema denticola substantially up-regulated the level of BMP-2. In contrary to the upregulatory effect of lysate, live T. denticola suppressed the expression of BMP-2. In addition, in vitro osteoblastic differentiation assay using C2C12 cells and the conditioned medium of HOK-16B cells confirmed the production of BMPs by gingival epithelial cells and the modulation of BMP expression by the lysates of S. sanguinis and T. denticola. In conclusion, we have shown that plaque bacteria can regulate the expression of BMP-2 by gingival epithelial cells, the physiologic meaning of which needs further investigation.