• Title/Summary/Keyword: Modular Unit

Search Result 205, Processing Time 0.018 seconds

A Study on the Development of GIS Based Water Quality Simulation System using HSPF in Basin of Yeong-san River (HSPF 모델을 적용한 GIS기반의 영산강 유역 수질모의 시스템 개발에 관한 연구)

  • Lee, Sung Joo;Kim, Kye Hyun;Lee, Chol Young;Lee, Geon Hwi
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.645-656
    • /
    • 2012
  • The basin environment has been seriously damaged by reckless development during the past half century. The demand for management in the basin has increased, but the system for prediction and management is not sufficient. Therefore, the aim of this study is to design a GIS-based water quality linkage system using the most suitable simulation, HSPF (Hydrological Simulation Program-Fortran) in this basin of South Korea. To achieve this, data of HSPF model for simulation and GIS data for spatial analysis is collected. And the system applied linkages of the water quality model and GIS such as Loose coupling. Also, the major function of the system was designed as a modular unit. Ultimately, the system is developed using development language of VB.NET from Microsoft and ArcObjects component from ESRI based on design for a module unit. The water quality simulation system can be supported to prediction and management for basin environment of Yeong-San River. In the future study, scenario will be established using the result of HSPF model And will be expected to support to situation of future basin and policy making.

A Study on the Efficient Modularization of Virtual World Creation in Unreal Engine (언리얼엔진에서의 가상세계 창작을 위한 효율적 모듈화 연구)

  • Min-Jun, Oh
    • Journal of Industrial Convergence
    • /
    • v.20 no.11
    • /
    • pp.19-25
    • /
    • 2022
  • In the development of existing games, it is judged that virtual world production was done by arranging game elements one by one. What is noteworthy here is the question of whether quality virtual worlds were efficiently produced in preparation for investment. In this study, we propose a methodology that can build an efficient virtual world based on the concept of modularization in an unreal engine. First, precedents were analyzed and five reference elements for modularization were extracted. In addition, the concept of an instance production pipeline was proposed by dividing it into four stages, and the minimum-unit instance modules for urban virtual world production were compressed into four. Finally, an urban virtual world constructed based on the minimum unit module and reference elements was implemented and presented. In conclusion, research on the production method centered on this efficiency is thought to be able to focus the time that designers or artists had to spend on production only on ideas and creativity. The limitations of the research are that the basic minimum module is limited to the city, and the derived reference elements and production pipelines have not been verified when implementing them with an unreal engine. Therefore, it is expected that various virtual world creation plans will be derived through more advanced modular research.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

Development of Economic Analysis Indicators and Case Scenario Analysis for Decision-making support for Off-Site Construction Utilization of Apartment Houses (OSC 활용 의사결정 지원을 위한 경제성 분석 지표 개발 및 사례 시나리오 분석 - 공동주택 PC공법을 중심으로 -)

  • Yun, Won-Gun;Bae, Byung-Yun;Shin, Eun-Young;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.24-35
    • /
    • 2023
  • Recently, the Ministry of Land, Infrastructure and Transport presented the '6th Construction Technology Promotion Basic Plan' and 'Smart Construction Revitalization Plan (2022.7.20)'. Off-Site Construction (OSC), which involves construction and production of PC (Precast Concrete) and Modular, etc., has advantages in shortening the construction period, reducing costs, improving quality, reducing construction waste, and reducing safety accidents. However, the construction cost is high compared to the traditional RC construction method, which has hindered its utilization and spread. In this study, OSC utilization was improved. An economic analysis indicator and methodology that can support decision-making in the planning and design stages for multi-unit housing were proposed. The factors used in the economic analysis of OSC (based on the PC method) of apartment houses were reviewed. As for the indicators used in the cost and benefit section, 'Construction Period', 'Disaster Occurrence', 'Waste Generation', and 'Greenhouse gas Emission', which reflect the technical advantages of OSC, were derived. In addition, a scenario analysis was conducted based on actual apartment housing case data for the presented economic analysis indicators and benefit calculation standards. The level of benefit that offsets the difference between the existing RC construction method and the construction cost was reviewed. In future studies, it will be necessary to conduct additional case studies to apply the measurement criteria for detailed indicators and supplement the benefit indicators.

A Study on the Development of GIS Based Integrated DB Management System for Ecological Environmental Management of Yeongsan Estuary (영산강 하구역 생태.환경 관리를 위한 GIS기반의 통합 DB관리시스템 개발)

  • Lee, Sung-Joo;Kim, Kye-Hyun;Seo, Jung-Taek
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.593-602
    • /
    • 2011
  • The estuarine area of the ecological environment had been seriously damaged by reckless developments during the past half century. The demand for management in estuarine area increased but the efficient management system did not exist. Therefore the aim of this study is to develop a GIS-based integrated DB management system by integrating the ecological environmental data of each division in estuarine area. To achieve this, the system used integrated DB. It is classified into a surveyed monitoring DB in 2010 at estuarine area of Yeongsan and GIS DB to express the spatial data. The integrated DB management system was developed using VisualBasic.NET languages and Arcobjects component for Map-based spatial analysis. Also, to improve the utilization of data, the composition of GUI(Graphical User Interface) through user needs analysis, the expression of monitoring DB, the priority of layer and the function for modular unit were defined. Ultimately the system was developed based on the defined items. GIS-based integrated DB management system can support to understand the ecological environment in estuarine area of Yeongsan river. Also it will provide the users with effective sharing and environmental management of the data. In the future study, comprehensive diagnosis for ecological environment in estuarine area and the reliable prediction need to be made by connecting modeling system.