• Title/Summary/Keyword: Modifying gene

Search Result 57, Processing Time 0.027 seconds

An Analysis of the Antibiotic Resistance Genes of Multi-Drug Resistant (MDR) Acinetobacter baumannii (다제내성 Acinetobacter baumannii 의 항생제 내성 유전자 분석)

  • Lim, Jina;Lee, Gyusang;Choi, Yeonim;Kim, Jongbae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • Acinetobacter baumannii (A. baumannii) is prevalent in hospital environments and is an important opportunistic pathogen of nosocomial infection. It is known that this pathogen cause herd infection in hospitals, and the mortality rate is remarkably higher for patients infected with this pathogen and already have other underlying diseases. Herein, we investigated the antibiotic resistance rate and the type of resistance genes in 85 isolates of multi-drug resistant A. baumannii from the samples commissioned to laboratory medicine in two university hospitals-in hospital A and hospital B-located in Cheonan and Chungcheong provinces, respectively, in Korea. As a result, $bla_{OXA-23-like}$ and $bla_{OXA-51-like}$ were detected in 82 stains (96.5%). These 82 strains of $bla_{OXA-23-like}$ producing A. baumannii were confirmed with the ISAba1 gene found at the top of the $bla_{OXA-23-like}$ genes by PCR, inducing the resistance against carbapenemase. The armA, AME gene that induces the resistance against aminoglycoside was detected in 34 strains out of 38 strains from Hospital A (89.5%), and in 40 strains out of 47 strains from Hospital B (85.1%), while AMEs were found in 33 strains out of 38 strains from Hospital A (70.2%) and in 44 strains out of 47 strains in Hospital B (93.6%). Therefore, it was found that most multi-drug resistant A. baumannii from the Cheonan area expressed both acethyltransferase and adenyltransferase. This study investigated the multi-drug resistant A. baumannii isolated from Cheonan and Chungcheong provinces in Korea, and it is thought that the results of the study can be utilized as the basic information to cure multi-drug resistant A. baumannii infections and to prevent the spread of drug resistance.

Development of an Effective PCR Technique for Analyzing T-DNA Integration Sites in Brassica Species and Its Application (배추과에서 T-DNA 도입 위치 분석을 위한 효과적인 PCR 방법 개발 및 이용)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.242-250
    • /
    • 2015
  • Insertional mutagenesis induced by T-DNA or transposon tagging offers possibilities for analysis of gene function. However, its potential remains limited unless good methods for detecting the target locus are developed. We describe a PCR technique for efficient identification of DNA sequences adjacent to the inserted T-DNA in a higher plant, Chinese cabbage (Brassica rapa ssp. pekinensis). This strategy, which we named variable argument thermal asymmetric interlaced PCR (VA-TAIL PCR), was designed by modifying a single-step annealing-extension PCR by including a touch-up PCR protocol and using long gene-specific primers. Amplification efficiency of this PCR program was significantly increased by employing an autosegment extension method and linked sequence strategy in nested long gene-specific primers. For this technique, arbitrary degenerate (AD) primers specific to B. rapa were designed by analyzing the Integr8 proteome database. These primers showed higher accuracy and utility in the identification of flanking DNA sequences from individual transgenic Chinese cabbages in a large T-DNA inserted population. The VA-TAIL PCR method described in this study allows the identification of DNA regions flanking known DNA fragments. This method has potential biotechnological applications, being highly suitable for identification of target genomic loci in insertional mutagenesis screens.

Enhancement of Transgene Expression by HDAC Inhibitors in Mouse Embryonic Stem Cells

  • Kim, Young-Eun;Park, Jeong-A;Park, Sang-Kyu;Kang, Ho-Bum;Kwon, Hyung-Joo;Lee, Younghee
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • Embryonic stem (ES) cells can self-renew and differentiate to various cells depending on the culture condition. Although ES cells are a good model for cell type specification and can be useful for application in clinics in the future, studies on ES cells have many experimental restraints including low transfection efficiency and transgene expression. Here, we observed that transgene expression after transfection was enhanced by treatment with histone deacetylse (HDAC) inhibitors such as trichostatin A, sodium butyrate, and valproic acid. Transfection was performed using conventional transfection reagents with a retroviral vector encoding GFP under the control of CMV promoter as a reporter. Treatment of ES cells with HDAC inhibitors after transfection increased population of GFP positive cells up to 180% compared with untreated control. ES cells showed normal expression of stem cell markers after treatment with HDAC inhibitors. Transgene expression was further enhanced by modifying transfection procedure. GFP positive cells selected after transfection were proved to have the stem cell properties. Our improved protocol for enhanced gene delivery and expression in mouse ES cells without hampering ES cell properties will be useful for study and application of ES cells.

Analysis on Noise of Automotive Alternator Considering the Number of Stator Slots (승용차용 교류발전기의 고정자 슬롯 수가 소음에 미치는 영향 분석)

  • Song, Jin-Seo;Kim, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.126-133
    • /
    • 2000
  • Noise of automotive alternators can be classified into mechanical noise, aerodynamic noise and electro-magnetic noise. which is the same as for electric motors. Previous studies show that the elect ro-magnetic noise takes a maw peak at the rotating frequency multiplied by the number of stator slots. It has not been proved clearly so far, however, that the major peak is wholely due to the stator slots. On the contrary it is well known that noise of motors. which has a mechanism similar to the alternator except that the number of stator slots in automotive alternators is in gene\integer multiple of that of rotor segments, is closely related to the number of rotor slots. Therefore, the statement that only the stator slots is the source of the major peak in the noise spectrum of alternators is suspicious although not easy, to show theoretically, that the statement is incorrect. In this paper. effects of the stator slots on the noise in an automotive alternator are experimentally investigated by intentionally modifying the number of stator slots in such a way that the number of the states is not an integer multiples of the rotor slots. It is shown that both the stator slots are not so much influential as the rotor slots and claimed that the major peak in the noise spectrum of conventional alternators is due to superposition of a component caused by the stator and a higher harmonic component caused by the rotor

Combinatorial Antitumor Activity of Oxaliplatin with Epigenetic Modifying Agents, 5-Aza-CdR and FK228, in Human Gastric Cancer Cells

  • Park, Jong Kook;Seo, Jung Seon;Lee, Suk Kyeong;Chan, Kenneth K;Kuh, Hyo-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.591-598
    • /
    • 2018
  • Epigenetic silencing is considered to be a major mechanism for loss of activity in tumor suppressors. Reversal of epigenetic silencing by using inhibitors of DNA methyltransferase (DNMT) or histone deacetylases (HDACs) such as 5-Aza-CdR and FK228 has shown to enhance cytotoxic activities of several anticancer agents. This study aims to assess the combinatorial effects of genesilencing reversal agents (5-Aza-CdR and FK228) and oxaliplatin in gastric cancer cells, i.e., Epstein-Barr virus (EBV)-negative SNU-638 and EBV-positive SNU-719 cells. The doublet combinatorial treatment of 5-Aza-CdR and FK228 exhibited synergistic effects in both cell lines, and this was further corroborated by Zta expression induction in SNU-719 cells. Three drug combinations as 5-Aza-CdR/FK228 followed by oxaliplatin, however, resulted in antagonistic effects in both cell lines. Simultaneous treatment with FK228 and oxaliplatin induced synergistic and additive effects in SNU-638 and SNU-719 cells, respectively. Three drug combinations as 5-Aza-CdR prior to FK228/oxaliplatin, however, again resulted in antagonistic effects in both cell lines. This work demonstrated that efficacy of doublet synergistic combination using DNMT or HDACs inhibitors can be compromised by adding the third drug in pre- or post-treatment approach in gastric cancer cells. This implies that the development of clinical trial protocols for triplet combinations using gene-silencing reversal agents should be carefully evaluated in light of their potential antagonistic effects.

Molecular Characterization of a Defensin-like Peptide from Larvae of a Beetle, Protaetia brevitarsis

  • Hwang, Jae-Sam;Kang, Bo-Ram;Kim, Seong-Ryul;Yun, Eun-Young;Park, Kwan-Ho;Jeon, Jae-Pil;Nam, Sung-Hee;Suh, Hwa-Jin;Hong, Mee-Yeon;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.1
    • /
    • pp.131-135
    • /
    • 2008
  • A cDNA encoding a defensin-like peptide (Protaetiamycine) from the larvae of a beetle, Protaetia brevitarsis was cloned. The DNAs encoded the deduced propeptide of 79 amino acid residues with the predicted molecular weight of 8.4 kDa and PI of 8.24. Overall amino acid sequence of this protein has 39% similarity to that of Rhodnius prolixus defensin, 43% similarity to that of Acalolepta luxuriosa defensin, and 72% similarity to that of Oryctes rhinoceros defensin, suggesting that this gene is an insect defensin. In an attempt to apply the anti-bacterial peptide to the development of therapeutic agents, a 12-mer peptide amidated at its C-terminus, ACAAHCLAIGRG-$NH_2$ (Ala55-Lys66-$NH_2$, 12Pbn) was synthesized. This peptide showed some antifungal activity against Candida albicans. To increase antifungal activity, six 9-mer peptides were synthesized by modifying amino acid sequences of 12Pbn fragment. Among these peptides, 9Pbm3-9Pbm6 exhibited strong activity compared with Cecropin B and mellitin.

In Vitro Regeneration of Carcinogen Thioacetamide Treated Rat Hepatocytes (Thioacetamide처리한 백서간세포의 in vitro 상에서의 재분열)

  • Yoo, So-Young;Kim, Kyu-Won;Lee, Hye-Jeong;Choi, Yong-Chun
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.399-406
    • /
    • 1996
  • Thioacetamide is a non-genotoxic carcinogen, a protein modifying agent. It causes nucleolar hypertrophy in short term treatment. In the present work, thioacetamide treated hepatocytes were observed in vivo and in vitro conditions. After 7 day treatment of rat liver with thioacetamide, the hepatocyte nucleoli were enlarged and their signalling molecules such as B23 and p38 MAPK were increased. When these hepatocytes were released by collagenases and were grown under the conditions of gene therapy grade tissue culture system, the enlarged nucleoli were further enlarged. The B23 content was again increased under in vitro conditions. From these experiments, it is clear that the hepatocytes possess approximately 100 fold flexibility of nucleolar capacity. It is suggested that thioacetamide enhances the ribosome genesis and exaggerates the nucleologenesis ability.

  • PDF

Chemical Modification and Feedback Inhibition of Arabidopsis thaliana Acetolactate Synthase (아라비돕시스 탈리아나 Acetolactate Synthase의 화학적 변형과 되먹임 방해)

  • Hong, Seong-Taek;Choi, Myung-Un;Shin, Jung-Hyu;Koh, Eun-Hie
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • Acetolactate synthase (ALS) was partially purified from Escherichia coli MF2000/pTATX containing Arabidopsis thaliana ALS gene. The partially purified ALS was examined for its sensitivity toward various modifying reagents such as iodoacetic acid, iodoacetamide, N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (PCMB), and phenylglyoxal. It was found that PCMB inhibited the enzyme activity most strongly followed by DTNB and NEM. Since iodoacetic acid did not compete with substrate pyruvate, it appeared that cysteine is not involved in the substrate binding site. On the other hand, the substrate protected the enzyme partly from inactivation by phenylglyoxal, which might indicate interaction of arginine residue with the substrate. The partially purified enzyme was inhibited by end products, valine and isoleucine, but not by leucine. However, the ALS modified with PCMB led to potentiate the feedback inhibition of all end products. Additionally, derivatives of pyrimidyl sulfur benzoate, a candidate for a new herbicide for ALS, were examined for their inhibitory effects.

  • PDF

Stable expression and characterization of brazzein, thaumatin and miraculin genes related to sweet protein in transgenic lettuce (감미단백질 관련 브라제인, 타우마틴 및 미라쿨린 유전자를 이용한 형질전환 상추 육성 및 발현분석)

  • Jung, Yeo Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.257-265
    • /
    • 2018
  • Sweetener is one of the additives that makes you feel sweet. Artificial sweeteners and sugar are typical examples, and sweetness proteins with sweetness characteristics have been widely studied. These studies elucidated the transformation lettuce cells with Agrobacterium method for stable production of natural sweet proteins, brazzein, thaumatin, and miraculin. In this paper, we report use of a plant expression system for production of sweet proteins. A synthetic gene encoding sweet proteins was placed under the control of constitutive promoters and transferred to lettuce. High and genetically stable expression of sweetener was confirmed in leaves by RT-PCR and Western blot analysis. Sweet proteins expressed in transgenic lettuce had sweetness-inducing activity. Results demonstrate recombinant sweet proteins correctly processed in transgenic lettuce plants, and that this production system could be a viable alternative to production from the native plant.

Multiplex PCR for Simultaneous Detection of Aminoglycoside Resistance Genes in Escherichia coli and Klebsiella pneumoniae

  • Kim, Hyun Chul;Jang, Ji-Hyun;Kim, Hyogyeong;Kim, Young-Jin;Lee, Kyoung-Ryul;Kim, Yun-Tae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.3
    • /
    • pp.155-165
    • /
    • 2012
  • The purpose of this study was to develop a multiplex PCR for the detection of aac(6')-Ib, aph(3')-Ia, and ant(2")-Ia; the genes that encode the most clinically relevant aminoglycoside modifying enzymes (AMEs) in Gram-negative bacteria. Clinical isolates of 80 E. coli and 23 K. pneumoniae from tertiary university hospital were tested by multiplex PCR. The most prevalent AME gene was aac(6')-Ib which was found in 22.3% of the isolates. Of the total 80 E. coli isolates, 1 isolate was found to contain both aph(3')-Ia and ant(2")-Ia simultaneouly. Of the total 23 K. pneumoniae isolates, 2 isolates were found to contain both aac(6')-Ib and aph(3')-Ia, and 1 isolate was found to contain both aac(6')-Ib and ant(2")-Ia simultaneously. Annual (2005~2009) analysis of isolates that contain the AME genes were of no correlation. The sensitivity and specificity of multiplex PCR in detecting AME genes was 94.4% (34 of 36 cases) and 100%, respectively. We suggest the multiplex PCR method we developed could be highly sensitive and specific in detecting the AME genes of E. coli and K. pneumoniae. This study could be the first published investigation in which the multiplex PCR method detects aac(6')-Ib, aph(3')-Ia, and ant(2")-Ia genes.

  • PDF