Molecular Characterization of a Defensin-like Peptide from Larvae of a Beetle, Protaetia brevitarsis

  • Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Kang, Bo-Ram (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Seong-Ryul (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Yun, Eun-Young (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Park, Kwan-Ho (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Jeon, Jae-Pil (Korea National Institute of Health) ;
  • Nam, Sung-Hee (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Suh, Hwa-Jin (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Hong, Mee-Yeon (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Ik-Soo (College of Agriculture & Life Sciences, Chonnam National University)
  • Published : 2008.09.30

Abstract

A cDNA encoding a defensin-like peptide (Protaetiamycine) from the larvae of a beetle, Protaetia brevitarsis was cloned. The DNAs encoded the deduced propeptide of 79 amino acid residues with the predicted molecular weight of 8.4 kDa and PI of 8.24. Overall amino acid sequence of this protein has 39% similarity to that of Rhodnius prolixus defensin, 43% similarity to that of Acalolepta luxuriosa defensin, and 72% similarity to that of Oryctes rhinoceros defensin, suggesting that this gene is an insect defensin. In an attempt to apply the anti-bacterial peptide to the development of therapeutic agents, a 12-mer peptide amidated at its C-terminus, ACAAHCLAIGRG-$NH_2$ (Ala55-Lys66-$NH_2$, 12Pbn) was synthesized. This peptide showed some antifungal activity against Candida albicans. To increase antifungal activity, six 9-mer peptides were synthesized by modifying amino acid sequences of 12Pbn fragment. Among these peptides, 9Pbm3-9Pbm6 exhibited strong activity compared with Cecropin B and mellitin.

Keywords

References

  1. Barbault, F., C. Landon, M. Guenneugues, J. P. Meyer, V. Schott and J. L. Dimarcq (2003) Solution structure of Alo-3: A new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry 42, 14434-14442 https://doi.org/10.1021/bi035400o
  2. Brey, P. T., W.-J. Lee, M .Yamakawa, Y. Koizumi, S. Perrot, M. Francois and M. Ashida (1993) Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc. Natl. Acad. Sci. 90, 6275-6279
  3. Bulet, P. and R. Stocklin (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12, 311 https://doi.org/10.2174/0929866053765590
  4. Cociancich, S., A. Ghazi, J. A. Hoffman, C. Hetrus and C. Letellier (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239-19245
  5. Dimarcq, J. L., P. Bulet, C. Hetru and J. Hoffmann (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47, 465-477 https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-#
  6. Engstrom, Y. (1999) Induction and regulation of antimicrobial peptides in Drosophila. Dev. Comp. Immunol. 23, 345-358 https://doi.org/10.1016/S0145-305X(99)00016-6
  7. Ferrandon, D., A. C. Jung, M. Criqui, B. Lemaitre, S, Uttenweiler-Joseph, L. Michaut, J. Reichhart and J. A. Hoffmann (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217-27 https://doi.org/10.1093/emboj/17.5.1217
  8. Hoffman, J. A., F. C. Kafatos, C. A. Janeway and R. A. Ezekowitz (1999) Phylogenic perspectives in innate immunity. Science 284, 1313-1318 https://doi.org/10.1126/science.284.5418.1313
  9. Hoffmann, J. A. (2003) The immune response of Drosophila. Nature 426, 3338
  10. Hultmark, D. (1993) Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet. 9, 178-183 https://doi.org/10.1016/0168-9525(93)90165-E
  11. Hultmark, D. (2003) Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12-19 https://doi.org/10.1016/S0952-7915(02)00005-5
  12. Kim, C.-H., J.-S. Lee, M.-S. Go and K.-T. Park (2002) Ecological characteristics of Protaetia orientalis submarmorea (Burmeister) (Coleoptera: Centoniidae) Korean J. Entomol. 41, 43-47
  13. Lehane, M. J., D. Wu, S. M. Lehane (1997) Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc. Natl. Acad. Sci. 94, 11502-11507
  14. Lehrer, R. I., M. Rosenman, S. S. Harwig, R. Jackson and P. Eisenhauer (1991) Utrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167-173 https://doi.org/10.1016/0022-1759(91)90021-7
  15. Lemaitre, B. (2004) The road to toll. Nat. Rev. Immunol. 4, 521-527 https://doi.org/10.1038/nri1390
  16. Lopez, L., G. Morales, R. Ursic, M. Wolff and C. Lowneberger (2003) Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of Chagas disease. Insect Biochem. Mol. Biol. 33, 439-447 https://doi.org/10.1016/S0965-1748(03)00008-0
  17. Matsuyama, K., S. Natori (1988) Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J. Biol. Chem. 263, 17117-17121
  18. Saido-Sakanaka, H., J. Ishibashi, A. Sagisaka, E. Momotani and M. Yamakawa (1999) Synthesis and characterization of bactericidal oligopeptides designed on the basis of an insect anti-bacterial peptide. Biochem. J. 338, 29-33 https://doi.org/10.1042/0264-6021:3380029
  19. Volkoff, A. N., J. Rocher, E. d'Alencon, M. Bouton, I. Landais and E. Quesada-Moraga (2003) Characterization and transcriptional profiles of three Spodoptera frugiperdagenes encoding cysteine-rich peptides: a new class of defensin-like genes from lepidopteran insects? Gene 319, 43-53 https://doi.org/10.1016/S0378-1119(03)00789-3