• Title/Summary/Keyword: Modified zone

Search Result 347, Processing Time 0.023 seconds

In situ horizontal stress effect on plastic zone around circular underground openings excavated in elastic zones

  • Komurlu, Eren;Kesimal, Ayhan;Hasanpour, Rohala
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.783-799
    • /
    • 2015
  • In this study, effect of horizontal in situ stress on failure mechanism around underground openings excavated in isotropic, elastic rock zones is investigated. For estimating the plastic zone occurrence, an induced stress influence area approach (Bray Equations) was modified to define critical stress ratio according to the Mohr-Coulomb failure criterion. Results obtained from modified calculations were compared with results of some other analytical solutions for plastic zone thickness estimation and the numerical modelling (finite difference method software, FLAC2D) study. Plastic zone and its geometry around tunnels were analyzed for different in situ stress conditions. The modified equations gave similar results with those obtained from the other approaches. However, safer results were calculated using the modified equations for high in situ stress conditions and excessive ratio of horizontal to vertical in situ stresses. As the outcome of this study, the modified equations are suggested to use for estimating the plastic zone occurrence and its thickness around the tunnels with circular cross-section.

Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin

  • Lee Deok-Bo
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.259-263
    • /
    • 2004
  • Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.

Plastic Zone Size in a Ductile Layer with an Interface Crack - Case Study for Dissimilar Substrates - (계면균열을 가진 연성접합재의 소성영역 크기 - 이종 모재의 경우 -)

  • Kim, Dong-Hak;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2003
  • Using the modified Irwin model and the modified Dugdale model, the plastic zone size near the interface crack tip in a ductile layer bonding two dissimilar elastic substrates is predicted. Validity of the models is examined by finite element method. The effects of several factors such as the mode mixity, T-stress and material properties are explored. The plastic zone size significantly decreases with the Poisson's ratio of the ductile layer.

The Toughening Mechanism of the Rubber-Modified Epoxy Resin (고무 변성 에폭시의 고인화 메카니즘)

  • 이덕보;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.106-109
    • /
    • 2001
  • In this work, we investigate the toughening mechanism of the rubber-modified epoxy resin. The fracture toughness($K_{IC}$) is measured using CT specimens for three kinds of rubber-modified epoxy resin with different rubber content. The damage zone and rubber particles around a crack tip of a damaged specimen just before fracture are observed by a polarization microscope and an atomic force microscope(AFM). Both the fracture energy($G_{IC}$) and the size of damage zone increase with the rubber content below l5wt%. The size of the rubber particles can be qualitatively correlated with the $G_{IC}$ and the size of damage zone. The cavitation of the rubber particles inside the damage zone is observed, which is expected to be main toughening mechanism by rubber particles. the stress which causes the cavitation of rubber particles is estimated by the Dugdale model.

  • PDF

Multi-dimensional models for predicting the chloride diffusion in concrete exposed to marine tidal zone: Methodology, Numerical Simulation and Application

  • Yang Ding;Zi-Xi He;Shuang-Xi Zhou
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.169-178
    • /
    • 2024
  • To circumvent the constraints of time-consuming experimental methods, numerical simulation can be one of the most effective approaches to investigating chloride diffusion behaviors in concrete. However, except for the effect of the external environments, the transport direction of the chloride cannot be neglected when the concrete is exposed to the marine tidal zone, especially in certain areas of concrete members. In this study, based on Fick's second law, considering the effects of timevarying, chloride binding capacity, concrete stress state, ambient temperature, and relative humidity on chloride diffusion coefficient, the modified one-dimensional, two-dimensional, and three-dimensional novel modified chloride diffusion theoretical models were established through defining the current boundary conditions. The simulated results based on the novel modified multi-dimensional model were compared with the experimental results obtained from some previous pieces of literature. The comparing results showed that the modified multi-dimensional model was well-fitted with experimental data, confirming the high accuracy of the novel modified model. The experimental results in literature showed that the chloride diffusion in the corner area of the concrete structure cannot be simulated by a simple one-dimensional diffusion model, where it is necessary to select a suitable multi-dimensional chloride diffusion model for simulation calculation. Therefore, the novel modified multi-dimensional model established in this study has a stronger applicability for practical engineering.

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.

Safety Inspection of Sea Dike in Reclamation Project Area Using Electrical and Electromagnetic Survey (전기, 전자탐사법을 이용한 간척개발 사업지구 내 방조제 안전점검)

  • Song, Seong-Ho;Seong, Baek-Uk;Kim, Yeong-Gyu
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.254-261
    • /
    • 2006
  • We applied electrical resistivity survey using modified pole-pole array and small-loop electromagnetic survey to delineate the zone of seawater inflow through a tide embankment. The tide embankment is generally affected by tidal variation and has low resistivity characteristic due to the high saturation of seawater. For this reason, the electrical resistivity survey using modified pole-pole array, which is relatively more effective to the conductive media, was carried out to detect the inflow zone of seawater and small-loop electromagnetic survey using multi-frequency with 300 to 20,010 Hz was conducted. As a result of both electrical resistivity survey using modified pole-pole array and small -loop electromagnetic survey, these survey methods are found to be quite effective for investigation of seawater inflow zone in the sea dike.

  • PDF

Effect of Cu-Additions on the Hand-Over Layer of an Aluminum Alloy - Hardening for the Top Ring Groove of Automotive Piston by the Plasma Transferred Arc Welding Process -

  • Moon, J.H.;Seo, C.J.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.58-62
    • /
    • 2001
  • The surface of AC8A Ah alloy was modified by adding the Cu powder using a Plasma Transferred Arc (PTA) welding process. Under the optimum fabricating conditions, the modified surface of AC8A Ah alloy was observed to possess the sound microstructure with a minimum porosity. Hardness and wear resistance properties of the as-fabricated alloy were compared with those of the 76 heat-treated one. In case of the as-fabricated alloy, the hardness of the modified layer was twice that of the matrix region. Although significant increase in the hardness of the matrix region was observed after T6 heat treatment, the hardness of the modified layer was not observed to change. The wear resistance of the modified layer was significantly increased compared to that of the matrix region. The microstructure of a weld zone and the matrix region were investigated using the optical microscope, scanning electron microscope (SEM), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). The primary and eutectic silicon in the weld zone were finer and more curved than in the matrix region, while some precipitates has had been found therein. According to the TEM observation, the predominant precipitate present in the weld zone was the $\theta$'phase, which is precipitated during cooling by rapid solidification in PTA welding process. Improvement of hardness and wear properties in the weld zone in the as-fabricated condition can be explained based on the presence of $\theta$’precipitates and fine primary and eutectic silicon distribution.

  • PDF

Microstructure Properties of High Strength Concrete Utilizing EVA with Micro Particles (EVA 마이크로 입자를 활용한 고강도 콘크리트의 미세구조특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.97-101
    • /
    • 2005
  • High strength concretes utilizing EVA with micro particles were prepared by varying polymer/binder mass ratio and curing conditions with a constant water/binder mass ratio of 0.3. The EVA modified concretes on the compressive and flexural strength, microstructure, ultrapulse modulus in curing condition(dry and water curing) were studied. Also, scanning electron microscope analysis(SEM) was performed to reveal the presence of polymer film and cement hydrates in the concrete. The compressive strength of the EVA modified concretes cured at water conditions ere higher than that of the EVA modified concretes cured at dry conditions. But, the flexural strength of the specimens cured at dry conditions were higher than that of the specimens cured at water conditions. Due to the interaction of the cement hydrates and polymer film, an interpenetrating network originated in which the aggregates were embedded. The curing of the polymer modified concrete involves two step of cement hydrates and polymer modification, and cement hydrates was promoted in water conditions and polymer film formation take place when water evaporates and was thereby was favored in dry conditions. By SEM analysis, influences of polymer modification was strengthening of the transition zone between the aggregate and the paste, and the porosity of transition zone decreases. By spring analysis, it could known that polymer film affects in porosity decrease and strengthening of transition zone.

  • PDF

Modified p-y curves to characterize the lateral behavior of helical piles

  • Hyeong-Joo, Kim;James Vincent, Reyes;Peter Rey, Dinoy;Tae-Woong, Park;Hyeong-Soo, Kim;Jun-Young, Kim
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.505-518
    • /
    • 2022
  • This study introduces soil resistance multipliers at locations encompassed by the zone of influence of the helix plate to consider the added lateral resistance provided to the helical pile. The zone of influence of a helix plate is a function of its diameter and serves as a boundary condition for the modified soil resistance springs. The concept is based on implementing p-multipliers as a reduction factor for piles in group action. The application of modified p-y springs in the analysis of helical piles allows for better characterization and understanding of the lateral behavior of helical piles, which will help further the development of design methods. To execute the proposed method, a finite difference program, HPCap (Helical Pile Capacity), was developed by the authors using Matlab. The program computes the deflection, shear force, bending moment, and soil resistance of the helical pile and allows the user to freely input the value of the zone of influence and Ω (a coefficient that affects the value of the p-multiplier). Results from ten full-scale lateral load tests on helical piles embedded at depths of 3.0 m with varying shaft diameters, shaft thicknesses, and helix configurations were analyzed to determine the zone of influence and the magnitude of the p-multipliers. The analysis determined that the value of the p-multipliers is influenced by the ratio between the pile embedment length and the shaft diameter (Dp), the effective helix diameter (Dh-Dp), and the zone of influence. Furthermore, the zone of influence is recommended to be 1.75 times the helix diameter (Dh). Using the numerical analysis method presented in this study, the predicted deflections of the various helical pile cases showed good agreement with the observed field test results.