DOI QR코드

DOI QR Code

Multi-dimensional models for predicting the chloride diffusion in concrete exposed to marine tidal zone: Methodology, Numerical Simulation and Application

  • Yang Ding (Department of Civil Engineering, Hangzhou City University) ;
  • Zi-Xi He (School of Civil Engineering and Architecture, East China Jiaotong University) ;
  • Shuang-Xi Zhou (School of Civil Engineering and Architecture, East China Jiaotong University)
  • Received : 2022.04.20
  • Accepted : 2023.12.14
  • Published : 2024.08.25

Abstract

To circumvent the constraints of time-consuming experimental methods, numerical simulation can be one of the most effective approaches to investigating chloride diffusion behaviors in concrete. However, except for the effect of the external environments, the transport direction of the chloride cannot be neglected when the concrete is exposed to the marine tidal zone, especially in certain areas of concrete members. In this study, based on Fick's second law, considering the effects of timevarying, chloride binding capacity, concrete stress state, ambient temperature, and relative humidity on chloride diffusion coefficient, the modified one-dimensional, two-dimensional, and three-dimensional novel modified chloride diffusion theoretical models were established through defining the current boundary conditions. The simulated results based on the novel modified multi-dimensional model were compared with the experimental results obtained from some previous pieces of literature. The comparing results showed that the modified multi-dimensional model was well-fitted with experimental data, confirming the high accuracy of the novel modified model. The experimental results in literature showed that the chloride diffusion in the corner area of the concrete structure cannot be simulated by a simple one-dimensional diffusion model, where it is necessary to select a suitable multi-dimensional chloride diffusion model for simulation calculation. Therefore, the novel modified multi-dimensional model established in this study has a stronger applicability for practical engineering.

Keywords

Acknowledgement

The work described in this paper was jointly supported by the Ministry of education of Humanities and Social Science project (No. 23YJCZH037), the Key Laboratory of C&PC Structures, Ministry of Education (CPCSME2024-01), the State Key Laboratory of Mountain Bridge and Tunnel Engineering (Grant No. SKLBT-2210), the Educational Science Planning Project of Zhejiang Province (Grant No. 2023SCG222), the Zhejiang Engineering Research Center of Intelligent Urban Infrastructure (Grant No. IUI2023-YB-12), and the Scientific Research Project of Zhejiang Provincial Department of Education (Grant No.Y202248682).

References

  1. Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A. and Shokrgozar, A. (2020), "Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives", Constr. Build. Mater., 262(11), 120034. https://doi.org/10.1016/j.conbuildmat.2020.120034.
  2. Al-samawi, M., Zhu, J. and Rong, W. (2023), "Application of 3D cellular automata-based analysis to chloride diffusion process in concrete bridges", Struct., 47(1), 500-519. https://doi.org/10.1016/j.istruc.2022.11.071.
  3. Al-Sodani, K.A.A., Al-Zahrani, M.M., Maslehuddin, M., AlAmoudi, O.S.B. and Al-Dulaijan, S.U. (2021), "Chloride diffusion models for Type I and fly ash cement concrete exposed to field and laboratory conditions", Mar. Struct., 76(3), 102900. https://doi.org/10.1016/j.marstruc.2020.102900.
  4. Al-Sodani, K.A.A., Al-Zahrani, M.M., Maslehuddin, M., AlAmoudi, O.S.B. and Al-Dulaijan, S.U. (2022), "Chloride diffusion models for plain and blended cement concretes exposed to laboratory and atmospheric marine conditions", J. Mater. Res. Technol., 17(3-4), 125-138. https://doi.org/10.1016/j.jmrt.2021.12.136.
  5. Al-Zahrani, M.M., Al-Sodani, K.A., Maslehuddin, M., AlAmoudi, O.S. and Al-Dulaijan, S.U. (2020), "Chloride diffusion models for type V and silica fume cement concretes", ACI Mater. J., 117(3), 11-20. https://doi.org/10.14359/71724589.
  6. Asen, F. and Dehestani, M. (2021), "Influence of concrete mix proportions on lifetime flexural load-bearing capacity of RC beams under chloride corrosion of rebars", Struct., 29(12), 2017-2027. https://doi.org/10.1016/j.istruc.2021.01.009.
  7. Bazant, Z.P. and Najjar, L.J. (1972), "Nonlinear water diffusion in nonsaturated concrete", Mater. Constr., 5, 3-20. https://doi.org/10.1007/BF02479073.
  8. Boddy, A., Bentz, E., Thomas, M.D.A. and Hooton, R.D. (1999), "An overview and sensitivity study of a multimechanistic chloride transport model", Cement Concrete Res., 29(6), 827-837. https://doi.org/10.1016/S0008-8846(99)00045-9.
  9. Chen, D., Feng, Y., Shen, J., Sun, G. and Shi, J. (2022), "Experimental and simulation study on chloride diffusion in unsaturated concrete under the coupled effect of carbonation and loading", Struct., 43(9), 1356-1368. https://doi.org/10.1016/j.istruc.2022.07.031.
  10. Chen, D., Yang, K., Hu, D. and Shi, J. (2021), "A meso-stochastic research on the chloride transport in unsaturated concrete", Constr. Build. Mater., 273, 121986. https://doi.org/10.1016/j.conbuildmat.2020.121986.
  11. Chen, R., Wei, X., Liu, F. and Anh, V.V. (2020), "Multi-term time fractional diffusion equations and novel parameter estimation techniques for chloride ions sub-diffusion in reinforced concrete", Philos. Trans. Royal Soc. A, 378(2172), 20190538. https://doi.org/10.1098/rsta.2019.0538.
  12. Cheng, X., Peng, J., Cai, C.S. and Zhang, J. (2020), "Experimental study on chloride ion diffusion in concrete under uniaxial and biaxial sustained stress", Mater., 13(24), 5717. https://doi.org/10.3390/ma13245717.
  13. Ding, Y., Hang, D., Wei, Y.J., Zhang, X.L., Ma, S.Y., Liu, Z.X., ... and Han, Z. (2023d), "Settlement prediction of existing metro induced by new metro construction with machine learning based on SHM data: A comparative study", J. Civil Struct. Health Monit., 13(6-7), 1447-1457. https://doi.org/10.1007/s13349-023-00714-4.
  14. Ding, Y., Wei, Y.J., Xi, P.S., Ang, P.P. and Han, Z. (2024a), "A long-term tunnel settlement prediction model based on BOGPBE with SHM data", Smart Struct. Syst., 33(1), 17-26. https://doi.org/10.12989/sss.2024.33.1.017.
  15. Ding, Y., Ye, X.W. and Guo, Y. (2023a), "Data set from wind, temperature, humidity and cable acceleration monitoring of the Jiashao bridge", J. Civil Struct. Health Monit., 13(3), 579-589. https://doi.org/ 10.1007/s13349-022-00662-5.
  16. Ding, Y., Ye, X.W. and Guo, Y. (2023b), "Wind load assessment with the JPDF of wind speed and direction based on SHM data", Struct., 47(1), 2074-2080. https://doi.org/10.1016/j.istruc.2022.12.028.
  17. Ding, Y., Ye, X.W. and Guo, Y. (2023c), "A multi-step direct and indirect strategy for predicting wind direction based on EMDLSTM model", Struct. Control Health Monit., 4950487. https://doi.org/10.1155/2023/4950487.
  18. Ding, Y., Ye, X.W. and Guo, Y. (2023f), "Copula-based JPDF of wind speed, wind direction, wind angle and temperature with SHM data", Probabilist. Eng. Mech., 73, 103483. https://doi.org/10.1016/j.probengmech.2023.103483.
  19. Ding, Y., Ye, X.W. and Su, Y. H, (2023g), "A framework of cable wire failure mode deduction based on Bayesian network", Struct., 57, 104996. https://doi.org/10.1016/j.istruc.2023.104996.
  20. Ding, Y., Ye, X.W., Ding, Z, Wei, G., Cui, Y.L. and Han, Z. (2023h), "Short-term tunnel-settlement prediction based on Bayesian wavelet: A probability analysis method", J. Zhejiang Univ. Sci. A, 24(11), 960-977. https://doi.org/10.1631/jzus.A2200599.
  21. Ding, Y., Ye, X.W., Guo, Y., Zhang, R. and Ma, Z. (2023e), "Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven", Probabilist. Eng. Mech., 73, 103475. https://doi.org/10.1016/j.probengmech.2023.103475.
  22. Ding, Y., Ye, X.W., Zhang, H. and Zhang, X.S. (2024b), "Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application", Steel Compos. Struct., 50(3), 363-374. https://doi.org/10.12989/scs.2024.50.3.363.
  23. Dong, Z., Wu, G. and Lian, J. (2018), "Experimental study on the durability of FRP bars reinforced concrete beams in simulated ocean environment", Sci. Eng. Compos. Mater., 25(6), 1123-1134. https://doi.org/10.1515/secm-2017-0237.
  24. Du, T., Li, C., Wang, X., Ma, L., Qu, F., Wang, B. and Li, W. (2022), "Effects of pipe diameter, curing age and exposure temperature on chloride diffusion of concrete with embedded PVC pipe", J. Build. Eng., 57(10), 104957. https://doi.org/10.1016/j.jobe.2022.104957.
  25. Elsayed, M., Tayeh, B.A., Taha, Y. and Abd El-Azim, A. (2022), "Experimental investigation on the behaviour of crumb rubber concrete columns exposed to chloride-sulphate attack", Struct., 46(10), 246-264. https://doi.org/10.1016/j.istruc.2022.10.077.
  26. Fan, S., Yan, Z., Qiao, L., Gui, F., Li, T., Yang, Q. and Ren, C. (2023), "Biological effects on the migration and transformation of microplastics in the marine environment", Mar. Environ. Res., 185(3), 105875. https://doi.org/10.1016/j.marenvres.2023.105875.
  27. Fan, Y.H. and Wang, N. (2024), "Experimental study on mechanical properties of MMA reinforced recycled coarse aggregate concrete", J. Henan Polytechnic Univ. (Nat. Sci), 43(1), 1-7. https://doi.org/10.16186/j.cnki.1673-9787.2022100064.
  28. Fenaux, M., Reyes, E., Galvez, J.C. and Moragues, A. (2019), "Modelling the transport of chloride and other ions in cementbased materials", Cement Concrete Compos., 97, 33-42. https://doi.org/10.1016/j.cemconcomp.2018.12.009.
  29. Gu, C., Ye, G. and Sun, W. (2015), "Ultrahigh performance concrete-properties, applications and perspectives", Sci. Chin. Technol. Sci., 58, 587-599. https://doi.org/10.1007/s11431-015-5769-4.
  30. Jin, L., Zhang, R., Du, X. and Li, Y. (2015), "Investigation on the cracking behavior of concrete cover induced by corner located rebar corrosion", Eng. Fail. Anal., 52, 129-143. https://doi.org/10.1016/j.engfailanal.2015.03.019.
  31. Kari, O.P., Elakneswaran, Y., Nawa, T. and Puttonen, J. (2013), "A model for a long-term diffusion of multispecies in concrete based on ion-cement-hydrate interaction", J. Mater. Sci., 48, 4243-4259. https://doi.org/10.1007/s10853-013-7239-3.
  32. Kwon, S.J., Na, U.J., Park, S.S. and Jung, S.H. (2009), "Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion", Struct. Saf., 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004.
  33. Lan, S.L., Zhang, H.R. and Li, H.M. (2023), "Study on the properties of modified steel slag aggregate concrete under sulfate erosion", J. Changsha. Univ. Sci. Tech. (Nat. Sci.), 20(5), 115-125. https://doi.org/10.19951/j.cnki.1672-9331.20230101003.
  34. Li, D., Li, L.Y. and Wang, X. (2019), "Chloride diffusion model for concrete in marine environment with considering binding effect", Mar. Struct., 66, 44-51. https://doi.org/10.1016/j.marstruc.2019.03.004.
  35. Li, J. and Shao, W. (2014), "The effect of chloride binding on the predicted service life of RC pipe piles exposed to marine environments", Ocean Eng., 88, 55-62. https://doi.org/10.1016/j.oceaneng.2014.06.021.
  36. Liang, M.T., Chang, J.J. and Yu, T.W. (2012), "Studies of the effect of diffusion-induced chloride binding on chlorination life predictions for existing reinforced concrete bridges", J. Mar. Sci. Technol., 20(4), 10. https://doi.org/10.6119/JMST-011-0318-2.
  37. Liew, K.M., Sojobi, A.O. and Zhang, L.W. (2017), "Green concrete: Prospects and challenges", Constr. Build. Mater., 156, 1063-1095. https://doi.org/10.1016/j.conbuildmat.2017.09.008.
  38. Liu, R.G., Chen, Y. and Cao, D.F. (2009), "Two-dimensional diffusion theory of chloride ion in prestressed concrete structures", J. Jiangsu Univ. (Nat. Sci.), 30(1), 86-89. https://doi.org/CNKI: SUN: JSLG.0.2009-01-022.
  39. Lv, B., Wang, Y.Z., Song, Z.G., Li, X., Zhang, Y.T. and Sun, Z.F. (2023), "Study on the strength degradation law of reinforced concrete material under chloride penetration", J. Munic. Technol., 41(12), 248-255. https://doi.org/10.19922/j.1009-7767.2023.12.248.
  40. Moutassem, F. and Miqdadi, I. (2020), "Sustainability-model approach for chloride permeability based on concrete mixture", Struct., 28(12), 983-990. https://doi.org/10.1016/j.istruc.2020.09.041.
  41. Nie, J., Wang, J., Gou, S., Zhu, Y. and Fan, J. (2019), "Technological development and engineering applications of novel steel-concrete composite structures", Front. Struct. Civil Eng., 13, 1-14. https://doi.org/10.1007/s11709-019-0514-x.
  42. Qu, F., Li, W., Dong, W., Tam, V.W. and Yu, T. (2021), "Durability deterioration of concrete under marine environment from material to structure: A critical review", J. Build. Eng., 35(3), 102074. https://doi.org/10.1016/j.jobe.2020.102074.
  43. Qu, F., Li, W., Guo, Y., Zhang, S., Zhou, J.L. and Wang, K. (2022), "Chloride-binding capacity of cement-GGBFS-nanosilica composites under seawater chloride-rich environment", Constr. Build. Mater., 342(8), 127890. https://doi.org/10.1016/j.conbuildmat.2022.127890.
  44. Sakai, K. and Sasaki, S. (1994), "Ten year exposure test of precracked reinforced concrete in a marine environment", Spec. Publ., 145, 353-370.
  45. Sanchez-Perez, J.F. and Alhama, I. (2020), "Universal curves for the solution of chlorides penetration in reinforced concrete, water-saturated structures with bound chloride", Commun. Nonlinear Sci. Numer. Simul., 84, 105201. https://doi.org/10.1016/j.cnsns.2020.105201.
  46. Suryavanshi, A.K., Swamy, R.N. and Cardew, G.E. (2002), "Estimation of diffusion coefficients for chloride ion penetration into structural concrete", Mater. J., 99(5), 441-449. https://doi.org/10.1016/S0886-7798(02)00068-8.
  47. Thomas, M.D. and Bamforth, P.B. (1999), "Modelling chloride diffusion in concrete: Effect of fly ash and slag", Cement Concrete Res., 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6.
  48. Tian, Y., Chen, C., Jin, N., Jin, X., Tian, Z., Yan, D. and Yu, W. (2019), "An investigation on the three-dimensional transport of chloride ions in concrete based on X-ray computed tomography technology", Constr. Build. Mater., 221, 443-455. https://doi.org/10.1016/j.conbuildmat.2019.05.144.
  49. Val, D.V. and Trapper, P.A. (2008), "Probabilistic evaluation of initiation time of chloride-induced corrosion" Reliab. Eng. Syst. Saf., 93(3), 364-372. https://doi.org/10.1016/j.ress.2006.12.010.
  50. Wang, P.S., Zeng, J.J., Fan, Z.H. and Wang, S.N. (2019), "Comparison of durability design for marine concrete structure between Chinese and British standards and their applications for Engineering", Corr. Sci. Prot. Technol., 31(6), 703-710. https://doi.org/10026495(2019)31:6<703:HGJGHN>2.0.TX,2-4. 10026495(2019)31:6<703:HGJGHN>2.0.TX
  51. Wu, J., Li, H., Wang, Z. and Liu, J. (2016), "Transport model of chloride ions in concrete under loads and drying-wetting cycles", Constr. Build. Mater., 112, 733-738. https://doi.org/10.1016/j.conbuildmat.2016.02.167.
  52. Xu, H., He, Z.X., Li, J. and Zhou, S.X. (2023), "Multidimensional transport experiment and simulation of chloride ions in concrete subject to simulated dry and wet cycles in a marine environment", Mater., 16(22), 7185. https://doi.org/10.3390/ma16227185.
  53. Xu, J. and Li, F. (2017), "Analytical model for load dependence of chloride penetration into concrete", J. Mater. Civil Eng., 29(5), 04016279. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001823.
  54. Yang, L.J., Li, Y., Liu, C.H., Ling, Y.F., Gao, T.M. and Ge, Z. (2024), "Effect of recycled aggregate on working and rheological properties of SCC", J. Munic. Technol., 42(1), 175-181. https://doi.org/10.19922/j.1009-7767.2024.01.175.
  55. Yang, Y.Y. (2023), "Analysis of the workability and durability of recycled aggregate self-compacting concrete", J. Munic. Technol., 41(8), 122-133. https://doi.org/10.19922/j.1009-7767.2023.08.122.
  56. Yu, B., Ling, G.Z., Fan, Z.H., Chen, Z. and Yang, L. (2021), "Numerical modelling and experimental validation of twodimensional chloride concentration distribution within concrete", Constr. Build. Mater., 298(9), 123804. https://doi.org/10.1016/j.conbuildmat.2021.123804.
  57. Zhang, Z., Ren, X., Niu, Q., Zhang, Y. and Zhao, B. (2023), "Durability degradation simulation of RC structure based on gamma process considering two-dimensional chloride diffusion and life probabilistic prediction", Struct., 48(2), 159-171. https://doi.org/10.1016/j.istruc.2022.12.059.
  58. Zhao, L.C., Zou, H.X., Xie, X., Guo, D.H., Gao, Q.H., Wu, Z.Y. and Zhang, W.M. (2023), "Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring", Nano Ener., 108(4), 108222. https://doi.org/10.1016/j.nanoen.2023.108222.
  59. Zhao, Q.L. and Zhang, Y.Z. (2017), "Concentration distribution of chloride ion under the influence of the convection-diffusion coupling", Adv. Mater. Sci. Eng., 2017(7), 2076986. https://doi.org/10.1155/2017/2076986.
  60. Zhou, M., Lu, W., Song, J. and Lee, G.C. (2018), "Application of ultra-high performance concrete in bridge engineering", Constr. Build. Mater., 186, 1256-1267. https://doi.org/10.1016/j.conbuildmat.2018.08.036.