• Title/Summary/Keyword: Modified silica

Search Result 259, Processing Time 0.022 seconds

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • Choi, Jong Yun;Joo, Myung-Ki;Lho, Byeong Cheol
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.

Analysis of PVDF Coating Properties with Addition of Hydrophobically Modified Fumed Silica

  • Lee, Nam Kyu;Kim, Young Hoon;Im, Tae Gyu;Lee, Dong Uk;Shon, MinYoung;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.232-242
    • /
    • 2019
  • In this study, hydrophobically modified fumed silica was added to the PVDF coating to improve corrosion protection performance. Two types of silane modifiers, trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ), were used for hydrophobic modification of the fumed silica. The composition of modified fumed silica was analyzed by Fourier transform infrared, X-ray photoelectron spectroscopy, and elemental analysis. The dispersion of modified fumed silica in the PVDF coating was observed by the transmission electron microscopy, and the hydrophobicity of PVDF coating was analyzed by the water contact angle. Surface properties were examined by the field emission scanning electron microscopy and scanning probe microscopy. Potentiodynamic polarization was conducted to confirm corrosion protection performance of PVDF coating in terms of hydrophobically-modified fumed silica contents. As a result, the average surface roughness and the water contact angle of the PVDF coating increased with modifier contents. The results of the potentiodynamic polarization test showed an increase of the Ecorr values with increase of the hydrophobicity of PVDF coating. Thus, it clearly indicates that the corrosion protection performance of PVDF coating improved with the addition of the hydrophobic-modified fumed silica that prevents the penetration of moisture into the PVDF coating.

Fabrication of Large-Area Photovoltaic Crystal with Modified Surface Using Trimethoxysilyl Propyl Methacrylate (TMSPM) for Solar Cell Protection

  • Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.84-87
    • /
    • 2014
  • Protection of solar cell surface is important to prevent from dust, pollen, sand, etc. Therefore, development of large area antifouling film is urgent for high performance of solar cells. The surface of silica spheres was modified to fabricate large area antifouling film. The surface of monodisperse silica spheres has been modified with 3-(trimethoxysilyl) propylmethacrylate (TMSPM) to fabricate large area photonic crystal. Although the surface modification of silica spheres with TMSPM has been failed for the base catalyst, the second trial using acid catalyst showed the following results. The FTIR absorption peak at $1721cm^{-1}$ representing C=O stretching vibration indicates that the TMSPM was attached on the surface of silica spheres. The methanol solution comprised of the surface modified silica spheres (average diameter of 380 nm) and a photoinitiator was poured in the patterned silicon wafer with the dimension of 10 cm x 10 cm and irradiated UV-light during the self-assembly process. The result showed large area crack and defect free nanostructures.

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Silica by in situ Tetraethoxysilane Hydrolysis over Acid Catalyst

  • Li, Qingyuan;Li, Xiangxu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.57-66
    • /
    • 2018
  • Styrene-butadiene rubber (SBR), reinforced with different contents of silica (with or without modification using silane coupling agents), was prepared by a modified sol-gel method involving hydrolyzation of tetraethoxysilane over an acid catalyst. The structures of the as-prepared samples were characterized using various techniques, such as scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical properties of the as-prepared samples were discussed in detail. The results revealed an increasing of the storage modulus (G') with increase in the silica content without modification. In contrast, G' decreased after modification using silane coupling agents, indicating a reduction in the silica-silica interaction and improved dispersion of silica in the SBR matrix. Both tensile stress and hardness increased with increase in the silica content (with modification) in the SBR matrix, albeit with low values compared to the samples with un-modified silica, except for the case of silica modified using (3-glycidyloxypropyl) trimethoxysilane (GPTS). The latter observation can be attributed to the special structure of GPTS and the effort of oxygen atom lone-pair.

Mechanical Properties of Silica Nanoparticle Reinforced poly(ethylene 2, 6-naphthalate)

  • Kim, Seong-Hun;Ahn, Seon-Hoon;Kim, Byoung-Chul;Shim, Kwang-Bo;Cho, Bong-Gyoo
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.293-302
    • /
    • 2004
  • We added surface-modified silica nanoparticles to poly(ethylene 2,6-naphthalate) (PEN) to investigate their effect on the mechanical properties on the PEN nanocomposite material. The torque and total torque values of the composites decreased in the silica nanoparticle composites. The tensile modulus of the composites reinforced with unmodified silica nanoparticles increased upon increasing the silica content, while the tensile strength and elongation decreased accordingly. In contrast, stearic acid-modified, silica nanoparticle reinforced PEN composites exhibited an increase in elongation and a decrease in tensile modulus upon addition of the silica nanoparticles because the stearic acid that had adsorbed onto the surface of the silica nanoparticle in multilayers could act as a plasticizer during melt compounding. Stearic acid modification had a small effect on the crystallization behavior of the composites. We calculated theoretical values of the tensile modulus using the Einstein, Kerner, and Nielsen equations and compared these values with the experimental data obtained from the composites. The parameters calculated using the Nielsen equation and the Nicolais- Narkis model revealed that the interfacial adhesion between silica nanoparticles and the PEN matrix could be improved.

Fabrication of Nearly Monodispersed Silica Nanoparticles by Using Poly(1-vinyl-2-pyrrolidinone) and Their Application to the Preparation of Nanocomposites

  • Chung, You-Sun;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • To fabricate dental nanocomposites containing finely dispersed silica nanoparticles, nearly monodispersed silica nanoparticles smaller than 25 nm were synthesized without forming any aggregates via a modified sol-gel process. Since silica nanoparticles synthesized by the Stober method formed aggregates when the particle size is smaller than 25 nm, the synthetic method was modified by changing the reaction temperature and adding poly(1-vinyl-2-pyrrolidinone) (PVP) to the reaction mixture. The size of the formed silica nanoparticles was reduced by increasing the reaction temperature or adding PVP. Furthermore, the formation of aggregates with primary silica nanoparticles smaller than 25 nm was prevented by increasing the amount of PVP added to the reaction mixture. To enhance the dispersion of the silica particles in an organic matrix, the synthesized silica nanoparticles were treated with 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). A dental nanocomposite containing finely dispersed silica nanoparticles could be produced by using the surface-treated silica nanoparticles.

Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin

  • Kang, Dong-Jun;Han, Dong-Hee;Kang, Young-Taec;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.422-422
    • /
    • 2009
  • Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the solgel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm, and they were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with aeryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure. The fabricated hybrid films exhibit an excellent optical transmission of above 90% in the visible region as well as an enhanced surface smoothness of around 1 nm RMS roughness. In addition, the hybrid films exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. More importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

  • PDF

Effect of steel fibres and nano silica on fracture properties of medium strength concrete

  • Murthy, A. Ramachandra;Ganesh, P.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2019
  • This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.

Material and rheological properties of (glycidoxypropyl) trimethoxysilane modified colloidal silica coatings

  • Kang Hyun Uk;Park Jung Kook;Kim Sung Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • Colloidal coating solution was prepared to enhance the hydrophilic property of the film surface. Water and ethanol were used as the dispersion media and (glycidoxypropyl) trimethoxysilane (GPS) as a binder in the colloidal silica coatings. Ethylene diamine was added to the colloidal silica solution as the curing agent. The colloidal silica solution was regarded as a hard-sphere suspension model with low volume fraction of the silica particles. Rheological properties of the silica suspensions modified with GPS have been investigated as a function of pH and concentration. The acidic solution showed high viscosity change by fast hydrolysis reaction and adsorption of the organic binders on the surface of silica particles. However, the hydrolysis was slow at the basic condition and the binders combined with themselves by condensation. The viscosity change was smallest at pH 7. The viscosity increased with the curing time after adding ethylenediamine, and the increase of viscosity at low pH was higher than that at high pH. The hydrophilic properties of the coating film were investigated by the contact angle of water and film surface. The smallest contact angle was shown under the strong acidic condition of pH 2.