• Title/Summary/Keyword: Modified materials

Search Result 2,815, Processing Time 0.031 seconds

Preparation and Properties of Modified Silicon-containing Arylacetylene Resin with Bispropargyl Ether

  • Zhang, Jian;Huang, Jianxiang;Yu, Xiaojiao;Wang, Canfeng;Huang, Farong;Du, Lei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3706-3710
    • /
    • 2012
  • A novel silicon-containing arylacetylene resin (MSAR) modified by dipropargyl ether of bisphenol A (DPBPA) and dipropargyl ether of perfluorobisphenol A (DPPFBPA) was prepared separately. The curing behaviors of modified resins, DPBPA/MSAR and DPPFBPA/MSAR, were characterized with differential scanning calorimeter (DSC). The kinetic parameters of modified resins were obtained by the Kissinger and Ozawa methods. The results of dynamic mechanical analysis (DMA) revealed that the glass transition temperature ($T_g$) of the cured DPBPA/MSAR reached $486^{\circ}C$. According to the thermogravimetric analysis (TGA), the decomposition temperature ($T_{d5}$) of the cured resins and char yield ($Y_c$, $800^{\circ}C$) decreased as the dipropargyl ether loadings increased, especially in air. With the same weight loading, thermal stability of DPBPA/MSAR was better than that of DPPFBPA/MSAR. The carbon fiber (T300) reinforced composites exhibited excellent flexural properties at room temperature with a high property retention at $300^{\circ}C$.

Development of Water-lubricated Plastic Bearings (수-윤활용 플라스틱 베어링 개발에 관한 연구)

  • Hosung Kong;Hung-gu Han
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.235-243
    • /
    • 2023
  • This paper presents the fabrication process of water-lubricated plastic bearings. Plastic bearings require good mechanical properties and tribological properties as well as elasticity and shock resistance, especially when lubricated in dirty water conditions. In this study, sleeve-type plastic bearings are produced by winding a prepreg sheet, which primary contains nitrile rubber (NBR)-modified epoxy, self-lubricating fillers, and various types of lattice-structured reinforcing fibers such as carbon, Aramid, and polyethylene terephthalate. A thermosetting epoxy is chemically modified with NBR to impart elasticity and low-friction characteristics in water conditions. Experimental investigations are conducted to examine the mechanical and tribological characteristics of the developed bearing materials, and the results are compared with the characteristics of a commercial plastic bearing (Thordon SXL), well known as a water-lubricated bearing. A Thordon bearing (mainly composed of polyurethane) exhibits an extremely low load-bearing capacity and is thus only suitable for medium loading (1~10MPa). The tribological characteristics of the test materials are evaluated through Falex block-on-ring (LFW-1) friction and wear tests. The results indicate that friction exhibited by the carbon-fiber-reinforced NBR-10wt.%-modified epoxy composite material, incorporated with the addition of 20wt.% UHMWPE and 6wt.% paraffin wax, is lower than that of the Thorden bearings, whereas its wear resistance surpass that of Thorden ones. Because of these features, the load carrying capacity of the fabricated composite (>10MPa) is higher than that of the Thorden bearings. These results confirm the applicability of water-lubricated plastic bearing materials developed in this study.

Improve H2S Gas Sensing Characteristics through SnO2 Microparticle Surface Modification and Ti Nanoparticle Decoration using Tip Sonication (Tip sonication을 이용한 SnO2 마이크로 입자 표면 개질 및 Ti 나노 입자 장식을 통한 H2S 가스 감지 특성 향상)

  • Ji Yeon Shin;Chan Gyu Kim;Ji Myeong Park;Hong Nhung Le;Jeong Yun Hwang;Myung Sik Choi
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.105-111
    • /
    • 2024
  • In this study, the H2S gas sensing characteristics were evaluated using surface-modified SnO2 microparticles by tip sonication. The surface-modified SnO2 microparticles were synthesized using the following sequential process. First, bare SnO2 microparticles were synthesized via a hydrothermal method. Then, the surfaces of bare SnO2 microparticles were modified with Ti nanoparticles during tip sonication. The sensing characteristics of SnO2 microparticles modified with Ti were systematically investigated in the range of 100-300℃, compared with the bare SnO2 microparticles. In this study, we discuss in detail the improved H2S sensing characteristics of SnO2 microparticles via Ti nanoparticle modification.

Electrochemical Characteristics of Porous Modified Silicon Impregnated with Metal as Anode Materials for Lithium Secondary Batteries (리튬 이차전지용 금속이 담지된 다공성 실리콘 음극물질의 전기화학적 특성)

  • Jang, Eun-Jung;Jeon, Bup-Ju
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.353-363
    • /
    • 2012
  • The relationship between the diffusivity and electrochemical characteristics of lithium secondary battery with the modified Si anode material prepared in HF/$AgNO_3$ solution was investigated. The crystallographic structure and images of the modified porous Si and modified Si/Cu was examined using the X-ray diffraction, BET and SEM. To examine the effect of metal composite and pore size distribution according to chemical etching on the electrochemical characterization, the electrodes for half cells were prepared with the modified Si, modified Si/Cu, and modified Si/Cu annealed with $600^{\circ}C$. Our results showed that the chemical diffusivity of lithium ions was related to structure and resistance of Si/Cu composite anode material. The lithium diffusivity in modified silicon compound calculated from the CV was at the range of $1{\times}10^{-12}$ to $9{\times}10^{-16}cm^2/s$. The effects of modified silicon structure and resistance on the cycling efficiency were significant.

An Improved Scheme for the Blank Holding Force in Sheet Metal Forming Analysis using the Modified Membrane Finite Element Considering Bending Effect (굽힘이 고려된 개량 박막 유한요소를 사용한 박판금속 성형해석에서의 블랭크 홀딩력 적용방법에 관한 연구)

  • Choi, Tae-Hoon;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.347-355
    • /
    • 1999
  • The paper is concerned with an improved scheme for application of the blank holding force in order to take account of the thickness distribution in the sheet material of the flange region. The scheme incorporates with a modified membrane finite element method for planar anisotropic materials. The new scheme proposed two coefficients α and βto calculate the compressive stress in the sheet metal due to the blank holding force, which should be determined properly for accurate analysis. The effect of αand βon the blank holding force distribution and the deformed shape is investigated with simulation of rectangular cup deep drawing processes by changing parameter values.

  • PDF

The Toughening Mechanism of the Rubber-Modified Epoxy Resin (고무 변성 에폭시의 고인화 메카니즘)

  • 이덕보;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.106-109
    • /
    • 2001
  • In this work, we investigate the toughening mechanism of the rubber-modified epoxy resin. The fracture toughness($K_{IC}$) is measured using CT specimens for three kinds of rubber-modified epoxy resin with different rubber content. The damage zone and rubber particles around a crack tip of a damaged specimen just before fracture are observed by a polarization microscope and an atomic force microscope(AFM). Both the fracture energy($G_{IC}$) and the size of damage zone increase with the rubber content below l5wt%. The size of the rubber particles can be qualitatively correlated with the $G_{IC}$ and the size of damage zone. The cavitation of the rubber particles inside the damage zone is observed, which is expected to be main toughening mechanism by rubber particles. the stress which causes the cavitation of rubber particles is estimated by the Dugdale model.

  • PDF

Sliding wear of Inconel 600 and 690 in room temperature air (상온 대기 중에서 인코넬 600과 690의 슬라이딩 마모)

  • 홍동석;김경국;김준기;김선진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.91-91
    • /
    • 2003
  • Sliding wear behaviors of Inconel 600 and 690 were investigated at room temperature in air. In the present study, Archard's equation which has low reliability was modified. In the prediction of wear volume by Archard's equation, the reliabilities of Inconel 600 and 690 were about from 26.3% to 45.7% and from 69. l% to 88.6%, respectively, The sliding wear behaviors of Inconel 600 and 690 turned out to be influenced by their stacking fault energy, and the fact was confirmed by using TEM and micro-hardness test Based on experimental results, the wear coefficient was modified as a function of the sliding distance. The calculation with the modified wear equation showed that the reliability of Inconel 600 tested with 409 ferritic stainless steel increased from 45.7% to 93.4%.

  • PDF

Properties of Water Resistant Plywood made with Modified Serum Protein Adhesive (혈장변성접착제를 사용한 내수합판의 특성)

  • Kang, Seog-Goo;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • This study was carried out to examine properties of water resistant plywood by using serum protein adhesive which is natural, environment-friendly and human-friendly. For the preparation of the serum protein adhesive, pig blood from slaughterhouse was centrifuged and serum was separated from corpuscles and concentrated to 30% by dry weight basis. This concentrated serum protein was modified with PF resin (50% NVC) with the ratio of 9 : 2.5. Plywood made by this modified serum protein gave 1.21 N/$mm^2$ of dry bonding strength, 0.80 N/$mm^2$ of wet boil bonding strength, 0% of cyclic delamination test value, and 0.025 ppm of HCHO emission, which met the excellent super $E_0$ grade and water resistant plywood.

Effect of Organically Modified Layered Silicate on Thermal, Mechanical, and Electrical Properties of Epoxy-Based Nanocomposites

  • Park, Jae-Jun;Kwon, Soon-Seok;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.135-139
    • /
    • 2011
  • In an effort to develop new electrical insulation materials, four different kinds of organically modified layered silicate were incorporated into an epoxy matrix to prepare nanocomposites for electrical insulation. Five wt% of organically modified layered silicates were processed in a planetary centrifugal mixer in an epoxy matrix, and the thermal, mechanical, and electrical properties of the cured epoxy/layered silicate were investigated. The morphology of the nanoscale silicate dispersed in the epoxy matrix was observed using transmission electron microscopy, and the interlayer distance was measured by wide-angle X-ray scattering diffraction analysis.

Analysis of Anisotropic Plasticity of Additively Manufactured Structure using Modified Return Mapping Method (개선된 회귀착점 방법을 이용한 이방성 적층구조물의 소성해석)

  • Yang, Seung-Yong;Jin, Doo-Han;Kim, Jeoung-Han
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.303-308
    • /
    • 2022
  • The plastic deformation behavior of additively manufactured anisotropic structures are analyzed using the finite element method (FEM). Hill's quadratic anisotropic yield function is used, and a modified return-mapping method based on dual potential is presented. The plane stress biaxial loading condition is considered to investigate the number of iterations required for the convergence of the Newton-Raphson method during plastic deformation analysis. In this study, incompressible plastic deformation is considered, and the associated flow rule is assumed. The modified return-mapping method is implemented using the ABAQUS UMAT subroutine and effective in reducing the number of iterations in the Newton-Raphson method. The anisotropic tensile behavior is computed using the 3-dimensional FEM for two tensile specimens manufactured along orthogonal additive directions.