• Title/Summary/Keyword: Modified gradient method

Search Result 172, Processing Time 0.023 seconds

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

THE PERFORMANCE OF A MODIFIED ARMIJO LINE SEARCH RULE IN BFGS OPTIMIZATION METHOD

  • Kim, MinSu;Kwon, SunJoo;Oh, SeYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.117-127
    • /
    • 2008
  • The performance of a modified Armijo line search rule related to BFGS gradient type method with the results from other well-known line search rules are compared as well as analyzed. Although the modified Armijo rule does require as much computational cost as the other rules, it shows more efficient in finding local minima of unconstrained optimization problems. The sensitivity of the parameters used in the line search rules is also analyzed. The results obtained by implementing algorithms in Matlab for the test problems in [3] are presented.

  • PDF

A STUDY ON THE MODIFIED GRADIENT METHOD FOR QUASI-DIFFERENTIABLE PROGRAMMING (유사 미분가능 최적화 문제에 있어서 수정 급상승법에 대한 연구)

  • 김준흥
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.67-76
    • /
    • 1992
  • 변수의 어떤 값들에 대해 도함수를 가질 수 없는 함수를 최적화해야 하는 등. OR 에서는 여러 상황이 존재한다. 이것은 Convex Analysis〔12〕서 이론적인 differential calculus를 근저로 하는 Non-differentiable Optimization 또는 Non-smooth Optimization 을 취급하는 것이 된다. 이러한 종류의 미분이 가능하지 않은 최적화문제는 연속함수를 위한 종래의 최적화법으로는 그 해법자체가 갖고 있는 연속성의 한계를 극복할 수 없다. 따라서, 이러한 문제를 해결하기 위해 Demyanov〔4〕가 제시한 quasi-differental function의 정의와 이들 함수에 따른 몇가지 주요정리들을 언급하고, 그것들을 토대로 Non-differentiable optimization problem의 수치적인 방법을 수행하기 위해 일종의 modified gradient 법을 제시한다. 이를 이용해서 numerical experiment를 위한 방법을 구체화하여, unrestricted non-differentable optimization problem에 적응하여, 그 수치해 결과를 보여서 그 타당성음 검토하였다.

  • PDF

On the dynamic stability of a composite beam via modified high-order theory

  • Man, Yi
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.151-164
    • /
    • 2022
  • This paper investigates the stability of the functionally graded cylindrical small-scale tube regarding the dynamic analysis and based on the modified nonclassical high-order nonlocal strain gradient theory. The nonlocal beam is modeled according to the high-order tube theory utilizing the energy method based on the Hamilton principle, then the nonlocal governing equations and also nonlocal boundary conditions equations are obtained. The tube structure is made of the new class of composite material composed of ceramic and metal phases as the functionally graded structures. The functionally graded (FG) tube structures rotate around the central axis, and the stability of this nanodevice is due to the centrifugal force which is used for the application of nanoelectromechanical systems (NEMS) is studied in detail.

Elliptic Numerical Wave Model Solving Modified Mild Slope Equation (수정완경사방정식의 타원형 수치모형)

  • YOON JONG-TAE
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.40-45
    • /
    • 2004
  • An efficient numerical model of the modified mild slope equation, based on the robust iterative method is presented. The model developed is verified against other numerical experimental results, related to wave reflection from an arc-shaped bar and wave transformation over a circular shoal. The results show that the modified mild slope equation model is capable of producing accurate results for wave propagation in a region where water depth varies substantially, while the conventional mild slope equation model yeilds large errors, as the mild slope assumption is violated.

STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR A MODIFIED SYSTEM OF VARIATIONAL INEQUALITIES AND A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • JEONG, JAE UG
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, a new iterative scheme based on the extra-gradient-like method for finding a common element of the set of fixed points of a finite family of nonexpansive mappings and the set of solutions of modified variational inequalities in Banach spaces. A strong convergence theorem for this iterative scheme in Banach spaces is established. Our results extend recent results announced by many others.

Iterative Least-Squares Method for Velocity Stack Inversion - Part B: CGG Method (속도중합역산을 위한 반복적 최소자승법 - Part B: CGG 방법)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.170-176
    • /
    • 2005
  • Recently the velocity stack inversion is having many attentions as an useful way to perform various seismic data processing. In order to be used in various seismic data processing, the inversion method used should have properties such as robustness to noise and parsimony of the velocity stack result. The IRLS (Iteratively Reweighted Least-Squares) method that minimizes ${L_1}-norm$ is the one used mostly. This paper introduce another method, CGG (Conjugate Guided Gradient) method, which can be used to achieve the same goal as the IRLS method does. The CGG method is a modified CG (Conjugate Gradient) method that minimizes ${L_1}-norm$. This paper explains the CGG method and compares the result of it with the one of IRSL methods. Testing on synthetic and real data demonstrates that CGG method can be used as an inversion method f3r minimizing various residual/model norms like IRLS methods.

Panoramic Image Synthesis Using Flash and No-Flash Image Pairs (Flash 영상과 No-flash 영상을 이용한 파노라마 영상합성)

  • Ye, Sang-Myoung;Park, Rae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.355-356
    • /
    • 2007
  • This paper proposes a new panoramic image synthesis method using flash and no-flash image pairs, which reduces undesirable artifacts. Generally, in panoramic images, it is difficult to determine to use a flash in indoor environment. A flash image has unwanted artifacts such as hot spots and tunnel effect whereas a no-flash image also has artifacts like glass reflection. We derive cross projection tensors using flash and no-flash image pairs and transform the gradient field of a no-flash image using them. The image reconstructed from the modified gradient provides enhanced results, which are applied to synthesis of panoramic images. The proposed method can provide a better panoramic image than the conventional method. Experimental results show the effectiveness of the proposed method.

  • PDF

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

Image Classification Using Modified Anisotropic Diffusion Restoration (수정 이방성 분산 복원을 이용한 영상 분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.479-490
    • /
    • 2003
  • This study proposed a modified anisotropic diffusion restoration for image classification. The anisotropic diffusion restoration uses a probabilistic model based on Markov random field, which represents geographical connectedness existing in many remotely sensed images, and restores them through an iterative diffusion processing. In every iteration, the bonding-strength coefficient associated with the spatial connectedness is adaptively estimated as a function of brightness gradient. The gradient function involves a constant called "temperature", which determines the amount of discontinuity and is continuously decreased in the iterations. In this study, the proposed method has been extensively evaluated using simulated images that were generated from various patterns. These patterns represent the types of natural and artificial land-use. The simulated images were restored by the modified anisotropic diffusion technique, and then classified by a multistage hierarchical clustering classification. The classification results were compared to them of the non-restored simulation images. The restoration with an appropriate temperature considerably reduces error in classification, especially for noisy images. This study made experiments on the satellite images remotely sensed on the Korean peninsula. The experimental results show that the proposed approach is also very effective on image classification in remote sensing.