• 제목/요약/키워드: Modified genetic algorithm

검색결과 203건 처리시간 0.022초

경쟁적 입지선정 문제의 안정집합을 찾기 위한 수리적 모형과 유전 알고리즘 (New Mathematical Formulations and an Efficient Genetic Algorithm for Finding a Stable Set in a Competitive Location Problem)

  • 최인찬;김성인;황대호
    • 대한산업공학회지
    • /
    • 제23권1호
    • /
    • pp.223-234
    • /
    • 1997
  • Companies often have to locate their facilities considering competitors' response to their locational decision. One model available in the literature is due to Dobson and Karmarkar, in which a firm has to decide locations so as to prevent competitors from entering the market after the firm's entry. In this paper, we provide new compact binary integer program formulations for their competitive location model and also present an efficient Genetic Algorithm(GA) for finding a (near-)optimal stable set. The GA we propose utilizes a penalty function to handle the feasibility of the problem and modified elitism for better performance of the algorithm. Computational comparisons indicate the superior performance of the GA over the Dobson and Karmarkar's branch and fathom algorithm.

  • PDF

서열순서화문제를 위한 상위정보를 이용하는 혼합형 유전 알고리즘 (A Hybrid Genetic Algorithm Using Epistasis Information for Sequential Ordering Problems)

  • 서동일;문병로
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.661-667
    • /
    • 2005
  • 본 논문에서는 서열순서화문제를 위한 새로운 혼합형 유전알고리즘을 제안한다. 제안된 유전알고리즘에서는 보로노이양자 화교차를 교차연산자로 사용하고 경로보전 3-최적화를 지역탐색 휴리스틱으로 사용한다. 보로노이양자화교차는 주어진 문제 인스턴스의 상위 정보를 이용하는 교차연산자이다. 이것은 원래 순회판매원문제를 위해서 제안된 교차연산자이기 때문에 서열순서화문제에 적용하기 위해서는 상당한 변형을 필요로 한다. 본 연구에서는 서열순서화문제에 맞도록 보로노이양자화교차를 적절히 변형하고, 변형된 보로노이양자화교차에서 필요로 하는 가능해생성알고리즘, 선행관계사이클분해알고리즘, 유전자거리지정방법 등을 개발하였다. TSPLIB와 ZIB-MP-Testdata로부터 얻어진 서열순서화문제 인스턴스들에 대한 실험결과, 제안된 유전알고리즘이 비교된 다른 유전알고리즘들에 비해서 더 안정적이고 성능이 우수한 것으로 나타났다.

개선된 퍼지 클러스터 알고리즘을 이용한 블라인드 비선형 채널등화에 관한 연구 (A Study on Blind Nonlinear Channel Equalization using Modified Fuzzy C-Means)

  • 박성대;한수환
    • 한국멀티미디어학회논문지
    • /
    • 제10권10호
    • /
    • pp.1284-1294
    • /
    • 2007
  • 본 논문에서는 개선된 퍼지 클러스터(Modified Fuzzy C-Means: MFCM) 알고리즘을 이용하여 블라인드 비선형 채널등화기를 구현하였다. 이를 위해 제안된 MFCM은 기존의 유클리디언 거리 값 대신 Bayesian Likelihood 목적함수(fitness function)를 이용하여 채널의 출력으로 수신된 데이터들로부터 비선형 채널의 최적의 채널 출력 상태 값(optimal channel output states)을 추정한다. 이렇게 구해진 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터를 구성하고 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용하여 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우스 잡음을 추가한 데이터를 사용하여 하이브리드 유전자 알고리즘 (genetic algorithm(GA) merged with simulated annealing (SA): GASA)과 그 성능을 비교하였으며, 제안된 MFCM을 이용한 등화기가 GASA를 사용한 것 보다 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

Optimal Scheme of Retinal Image Enhancement using Curvelet Transform and Quantum Genetic Algorithm

  • Wang, Zhixiao;Xu, Xuebin;Yan, Wenyao;Wei, Wei;Li, Junhuai;Zhang, Deyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2702-2719
    • /
    • 2013
  • A new optimal scheme based on curvelet transform is proposed for retinal image enhancement (RIE) using real-coded quantum genetic algorithm. Curvelet transform has better performance in representing edges than classical wavelet transform for its anisotropy and directional decomposition capabilities. For more precise reconstruction and better visualization, curvelet coefficients in corresponding subbands are modified by using a nonlinear enhancement mapping function. An automatic method is presented for selecting optimal parameter settings of the nonlinear mapping function via quantum genetic search strategy. The performance measures used in this paper provide some quantitative comparison among different RIE methods. The proposed method is tested on the DRIVE and STARE retinal databases and compared with some popular image enhancement methods. The experimental results demonstrate that proposed method can provide superior enhanced retinal image in terms of several image quantitative evaluation indexes.

유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행 (Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms)

  • 전권수;권오흥;박종현
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Parameter Identification of Induction Motors using Variable-weighted Cost Function of Genetic Algorithms

  • Megherbi, A.C.;Megherbi, H.;Benmahamed, K.;Aissaoui, A.G.;Tahour, A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.597-605
    • /
    • 2010
  • This paper presents a contribution to parameter identification of a non-linear system using a new strategy to improve the genetic algorithm (GA) method. Since cost function plays an important role in GA-based parameter identification, we propose to improve the simple version of GA, where weights of the cost function are not taken as constant values, but varying along the procedure of parameter identification. This modified version of GA is applied to the induction motor (IM) as an example of nonlinear system. The GA cost function is the weighted sum of stator current and rotor speed errors between the plant and the model of induction motor. Simulation results show that the identification method based on improved GA is feasible and gives high precision.

변형된 유전자 알고리즘을 이용한 Multiple Array 안테나의 빔 제어방식 (Beam Control Method of Multiple Array Antenna Using The Modified Genetic Algorithm)

  • 현교환;정경권;엄기환
    • 전자공학회논문지SC
    • /
    • 제44권2호
    • /
    • pp.39-45
    • /
    • 2007
  • 본 논문에서는 multiple array 안테나 링크 상에서 각 스테이션 간의 안테나 빔의 스위트 스폿을 변형된 유전자 알고리즘을 이용하여 찾고 유지하는 방법을 제안하였다. 제안한 방식은 각 스테이션에서 전송하는 데이터에 안테나의 정보를 같이 전송하며 범의 강도를 거리함수로 나타내고 그 거리함수의 곱을 적합도 함수로 이용하여 최대값이 되는 각도를 찾는 방식이다. 변형된 유전자 알고리즘 방식은 전처리 과정을 통하여 우수한 초기세대를 선택하는 방식으로 일반적인 유전자 알고리즘방식에서 랜덤하게 초기세대를 갖는 것과는 차별화가 된다. 통식 방식은 시분할 이중화 (TDD: Time Division Duplex) 방식으로 하여 전송하는 데이터에 안테나 정보를 같이 보낸다. 제안한 방식의 유용성을 확인하기 위하여 1:1, 1:2, 1:5 array 안테나의 세 가지 경우에 대하여 시뮬레이션 하였다. 염색체의 길이는 8bit, 16bit, split인 경우에 대하여 개체 수와 세대 수를 변화시켜 수렴 확률을 비교 검토하였다. 제안한 16bit split는 실제로는 8bit이지만 16bit와 유사한 좋은 수렴율을 보여주었다.

다단계 제품 구조를 고려한 유연 잡샵 일정계획의 Large Step Optimization 적용 연구 (Large Step Optimization Approach to Flexible Job Shop Scheduling with Multi-level Product Structures)

  • Jang, Yang-Ja;Kim, Kidong;Park, Jinwoo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.429-434
    • /
    • 2002
  • For companies assembling end products from sub assemblies or components, MRP (Material Requirement Planning) logic is frequently used to synchronize and pace the production activities for the required parts. However, in MRP, the planning of operational-level activities is left to short term scheduling. So, we need a good scheduling algorithm to generate feasible schedules taking into account shop floor characteristics and multi-level job structures used in MRP. In this paper, we present a GA (Genetic Algorithm) solution for this complex scheduling problem based on a new gene to reflect the machine assignment, operation sequences and the levels of the operations relative to final operation. The relative operation level is the control parameter that paces the completion timing of the components belonging to the same branch in the multi-level job hierarchy. In order to revise the fixed relative level which solutions are confined to, we apply large step transition in the first step and GA in the second step. We compare the genetic algorithm and 2-phase optimization with several dispatching rules in terms of tardiness for about forty modified standard job-shop problem instances.

  • PDF

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

A Modified FCM for Nonlinear Blind Channel Equalization using RBF Networks

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. In its searching procedure, all of the possible desired channel states are constructed with the elements of estimated channel output states. The desired state with the maximum Bayesian fitness is selected and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.