• Title/Summary/Keyword: Modified fly-ash

Search Result 69, Processing Time 0.024 seconds

Preparation of Polymer-modified Mortars with Recycled PET and Their Sound Absorption Characteristics (재활용 PET 를 이용한 고분자 몰타르의 제조 및 흡음 특성)

  • Hong, Byung-Pyo;Byun, Hong-Sik
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.410-414
    • /
    • 2010
  • Two different types of polymer-modified mortars(PMM) were prepared with recycled PET and fly-ash. One is rigid PMM and the other is flexible PMM which are based on the composition of recycled PET. Their mechanical properties including friction coefficient measurement and damping characteristics such as sound absorption were investigated and compared with the commercial PMM such as epoxy PMM and PET PMM. The result from mechanical properties indicated that the rigid PMM could be competitive with the commercial PET PMM. The measurement of sound absorption coefficient showed that both rigid PMM and flexible PMM had much better damping capacity than commercial PMM. However, the friction coefficient of rigid PMM revealed that it would be suitable for the use as floor material.

A Study on Basic Properties of Grouting Motars for polymer-Modified preplaced Aggregate Concrete (프리팩트 폴리머 시멘트 콘크리트용 주입 폴리머 시멘트 모르터의 성질에 관한 연구)

  • 이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.350-355
    • /
    • 1998
  • Preplaced aggregate concrete in the building fields has recently been used in the partial repair works for damaged reinforced concrete structures, and polymer-modified mortars have been employed as grouting mortars for the preplaced aggregate concrete. The objective of this study is to clear the properties of polymer-modified grouting mortars. Polymer-modified mortars using a polystyrene acrylic(St/Ac) emulsion as grouting mortars for preplaced aggregate concrete are prepared with various mix proportions, and tested for flexural and compressive strengths, adhesion in tension. The flexural strength of emulsion-modified grouting mortars does not give much variation with increasing fly ash replacement for cement and sand-binder ratio. With increasing polymer-binder ratio, the flexural strength and adhesion in tension of St/Ac emulsion-modified grouting mortars increases, become nearly constant or reaches a maximum at a polymer-binder ratio of 5%. From the test results, St/Ac emulsion-modified grouting mortar with a polymer-binder ratio of 5%, a fly ash replacement of 10% for cement and sand-binder ratio of 1.0 is recommended as a grouting mortar for preplaced aggregate concrete.

  • PDF

Study on the Hydration and Strength Properties of Fly-ash Modified Cement Paste and Mortar Using a CSA and Pulp Ash (CSA 및 제지애쉬를 혼합재료 사용한 플라이애쉬 시멘트 모르타르의 수화 및 강도 특성에 관한 연구)

  • Song, Tae-Hyeob;Lee, Sea-Hyun;So, Chee-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2005
  • The fly ash has been widely used in the latest to complement the performance and economical efficiency of the concrete which uses only a normal portland cement, the pulp ash gained through the incineration of paper sludge is possible to be used as the material of concrete because it contains the properties similar to the previous fly ash in ingredients and physical characteristics. Therefore, this research has tested physical characteristics by replacing 20% of fly ash used with the paper ash to solve the problem which lowers the early strength caused when the fly ash was used. As a result, it showed that the fluidity becomes lower and the compressive strength becomes increased by using paper ash. In addition, after mixing the paper ash with the fly ash, it showed that time and heating amount of the 2nd peak of the minor heat of hydration affecting the revelation of strength was equivalent to the combination for normal portland cement, and also indicated that the compressive strength for 3 days is superior to the combination of the fly ash. Therefore, if the paper ash having a regular fineness is used, it was effective in improving the early strength of concrete used the fly ash.

  • PDF

Adhesion in Flexure of SBR-Modified Mortars with Fly Ash (플라이애쉬와 SBR을 혼입한 폴리머 시멘트 모르타르의 휨접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.162-163
    • /
    • 2019
  • The purpose of this study is to evaluate the adhesion in flexure of SBR-modified mortar adding Fly Ash(FA). From the test results, the adhesion in flexure is seriously affected by polymer-binder ratios and adding content of FA. The maximum adhesion in flexure of SBR- modified mortar is about 1.46 times, the plain cement mortar. It is apparent that the adhesion in flexure of SBR-modified mortars by polymer-binder ratios is much more improved than that by adding contents of AF.

  • PDF

Adhesion in Tension of Polymer-Modified Mortars with Blast-Furnace Slag and Fly ash (고로슬래그 및 플라이애쉬를 혼입한 폴리머 시멘트 모르타르의 인장접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.232-233
    • /
    • 2017
  • The purpose of this study is to evaluate the Adhesion in tension of cement mortar according to adding admixtures such as polymer dispersions, blast-furnace slag and fly ash. From the test results, the adhesion in tension is seriously affected by type of polymer compared with polymer-binder ratios and types of admixture. The maximum adhesion in tension of EVA- modified mortar is about 1.46 times, the cement mortar. It is apparent that the adhesion in tension of polymer-modified mortars according to adding two admixtures is much more improved irrespective of polymer-binder ratio.

  • PDF

A Study on the Preparation Method of Geopolymeric Concrete using Specifically Modified Silicate and Inorganic Binding Materials and Its Compressive Strength Characteristics

  • Kim, Jong Young
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.150-153
    • /
    • 2015
  • Recently, research on geopolymeric concrete that does not use cement as a binder has been actively investigated. Geopolymeric concrete is cement-free concrete. Masato, ocher and/or soil has been solidified into geopolymeric concrete by the reaction of specifically modified silicate as an alkali activator and inorganic binding materials such as blast furnace slag, fly ash or meta-kaolin, which is cured at room temperature to exhibit high compressive strengths. Based on the results, this study shows how geopolymeric concrete that uses specifically modified silicate and inorganic binding materials is implemented as eco-cement with no cement.

Prediction of compressive strength of concrete modified with fly ash: Applications of neuro-swarm and neuro-imperialism models

  • Mohammed, Ahmed;Kurda, Rawaz;Armaghani, Danial Jahed;Hasanipanah, Mahdi
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.489-512
    • /
    • 2021
  • In this study, two powerful techniques, namely particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) were selected and combined with a pre-developed ANN model aiming at improving its performance prediction of the compressive strength of concrete modified with fly ash. To achieve this study's aims, a comprehensive database with 379 data samples was collected from the available literature. The output of the database is the compressive strength (CS) of concrete samples, which are influenced by 9 parameters as model inputs, namely those related to mix composition. The modeling steps related to ICA-ANN (or neuro-imperialism) and PSO-ANN (or neuro-swarm) were conducted through the use of several parametric studies to design the most influential parameters on these hybrid models. A comparison of the CS values predicted by hybrid intelligence techniques with the experimental CS values confirmed that the neuro-swarm model could provide a higher degree of accuracy than another proposed hybrid model (i.e., neuro-imperialism). The train and test correlation coefficient values of (0.9042 and 0.9137) and (0.8383 and 0.8777) for neuro-swarm and neuro-imperialism models, respectively revealed that although both techniques are capable enough in prediction tasks, the developed neuro-swarm model can be considered as a better alternative technique in mapping the concrete strength behavior.

Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C-S-H phase

  • Golewski, Grzegorz Ludwik;Szostak, Bartosz
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.543-556
    • /
    • 2022
  • Fly ash (FA) is the main additive to concretes currently produced. This substitute of ordinary Portland cement (OPC) have a positive effect on the structure and mechanical parameters of mature concrete. Unfortunately, the problem of using FA as the OPC replacement is that it significantly reduces the performance of concretes in the early stages of their curing. This limits the possibility of using this type of concrete, e.g., in the prefabrication, where it is required to obtain high strength composites after short periods of their curing. In order to minimize these negative effects, research has been undertaken to increase the early strength of the concretes with FA through the application of a specially dedicated chemical nanoadmixture (NA) in the form of seeds of the C-S-H phase. Therefore, this paper presents results of tests of modified concretes both with the addition of FA and with NA. The analyses were carried out based on the results of the macroscopic and microstructural tests in 5 time periods, i.e. after: 4, 8, 12, 24 and 72 hours. The greatest increase in mechanical strength parameters and rapid development of the basic matrix phases in composites in the first 12 hours of composites curing was observed.

Characteristics of compressive strength of hardening used by fly ash and waste lime (다량의 폐석회와 석탄회를 이용한 경화체의 강도적 특성)

  • 고대형;이정재;박응모;문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.653-658
    • /
    • 2001
  • The purpose of this study is to evaluate the compressive strength properties of hardening using the unrefined fly-ash and waste lime and to offer basic data to someone for recycling waste lime Waste limes are tested that specific gravity and pH value and observed microstructure of particle with SEM. The compressive strengths of Wast lime hardening which is mixed with regular ratio according to each admixture are measured. In the results of test, The pH of wast lime is very high by pH 12.1 and specific gravity is 2.22. Compressive strengths on hardening modified waste lime and fly ash is very effective. The vest compressive strengths is show that CaCl$_2$ existed in waste lime

  • PDF

PMM for Surface Treatment of Concrete with the Utilization of By-Products

  • Drochytka, Rostislav;Zizkova, Nikol
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • The disadvantage of PMM's (polymer-modified mortars) that are currently on the market is the utilization of expensive polymer additives and also the cost of the other components. One of the possibilities how to decrease this price is the effective utilization of waste materials which are very inexpensive in spite of their good properties. The combinations of different degree in polymer adhesiveness and waste secondary raw materials - fly ash - are experimentally verified in the paper. The use of fly ash in adhesive materials for ceramic tiles is limited by unsatisfactory initial adhesiveness to sintered ceramic sherd as a result of a running pozzolanic reaction that lowers the efficiency of polymer additives. On the other hand, the use of adhesive and backfill coating materials for gluing ETICS board insulation materials has brought very good results.