• Title/Summary/Keyword: Modified booth multiplier

Search Result 23, Processing Time 0.016 seconds

New VLSI Architecture of Parallel Multiplier-Accumulator Based on Radix-2 Modified Booth Algorithm (Radix-2 MBA 기반 병렬 MAC의 VLSI 구조)

  • Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.94-104
    • /
    • 2008
  • In this paper, we propose a new architecture of multiplier-and-accumulator (MAC) for high speed multiplication and accumulation arithmetic. By combining multiplication with accumulation and devising a hybrid type of carry save adder (CSA), the performance was improved. Since the accumulator which has the largest delay in MAC was removed and its function was included into CSA, the overall performance becomes to be elevated. The proposed CSA tree uses 1's complement-based radix-2 modified booth algorithm (MBA) and has the modified array for the sign extension in order to increase the bit density of operands. The CSA propagates the carries by the least significant bits of the partial products and generates the least significant bits in advance for decreasing the number of the input bits of the final adder. Also, the proposed MAC accumulates the intermediate results in the type of sum and carry bits not the output of the final adder for improving the performance by optimizing the efficiency of pipeline scheme. The proposed architecture was synthesized with $250{\mu}m,\;180{\mu}m,\;130{\mu}m$ and 90nm standard CMOS library after designing it. We analyzed the results such as hardware resource, delay, and pipeline which are based on the theoretical and experimental estimation. We used Sakurai's alpha power low for the delay modeling. The proposed MAC has the superior properties to the standard design in many ways and its performance is twice as much than the previous research in the similar clock frequency.

A Design of the High-Speed Cipher VLSI Using IDEA Algorithm (IDEA 알고리즘을 이용한 고속 암호 VLSI 설계)

  • 이행우;최광진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.64-72
    • /
    • 2001
  • This paper is on a design of the high-speed cipher IC using IDEA algorithm. The chip is consists of six functional blocks. The principal blocks are encryption and decryption key generator, input data circuit, encryption processor, output data circuit, operation mode controller. In subkey generator, the design goal is rather decrease of its area than increase of its computation speed. On the other hand, the design of encryption processor is focused on rather increase of its computation speed than decrease of its area. Therefore, the pipeline architecture for repeated processing and the modular multiplier for improving computation speed are adopted. Specially, there are used the carry select adder and modified Booth algorithm to increase its computation speed at modular multiplier. To input the data by 8-bit, 16-bit, 32-bit according to the operation mode, it is designed so that buffer shifts by 8-bit, 16-bit, 32-bit. As a result of simulation by 0.25 $\mu\textrm{m}$ process, this IC has achieved the throughput of 1Gbps in addition to its small area, and used 12,000gates in implementing the algorithm.

A Low-Complexity 128-Point Mixed-Radix FFT Processor for MB-OFDM UWB Systems

  • Cho, Sang-In;Kang, Kyu-Min
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In this paper, we present a fast Fourier transform (FFT) processor with four parallel data paths for multiband orthogonal frequency-division multiplexing ultra-wideband systems. The proposed 128-point FFT processor employs both a modified radix-$2^4$ algorithm and a radix-$2^3$ algorithm to significantly reduce the numbers of complex constant multipliers and complex booth multipliers. It also employs substructure-sharing multiplication units instead of constant multipliers to efficiently conduct multiplication operations with only addition and shift operations. The proposed FFT processor is implemented and tested using 0.18 ${\mu}m$ CMOS technology with a supply voltage of 1.8 V. The hardware- efficient 128-point FFT processor with four data streams can support a data processing rate of up to 1 Gsample/s while consuming 112 mW. The implementation results show that the proposed 128-point mixed-radix FFT architecture significantly reduces the hardware cost and power consumption in comparison to existing 128-point FFT architectures.