
ETRI Journal, Volume 32, Number 1, February 2010          © 2010  Sang-In Cho et al.   1 

In this paper, we present a fast Fourier transform (FFT) 
processor with four parallel data paths for multiband 
orthogonal frequency-division multiplexing ultra-
wideband systems. The proposed 128-point FFT processor 
employs both a modified radix-24 algorithm and a radix-23 
algorithm to significantly reduce the numbers of complex 
constant multipliers and complex booth multipliers. It also 
employs substructure-sharing multiplication units instead 
of constant multipliers to efficiently conduct multiplication 
operations with only addition and shift operations. The 
proposed FFT processor is implemented and tested using 
0.18 µm CMOS technology with a supply voltage of 1.8 V. 
The hardware- efficient 128-point FFT processor with four 
data streams can support a data processing rate of up to 1 
Gsample/s while consuming 112 mW. The implementation 
results show that the proposed 128-point mixed-radix FFT 
architecture significantly reduces the hardware cost and 
power consumption in comparison to existing 128-point 
FFT architectures. 
 

Keywords: Fast Fourier transform (FFT), mixed-radix, 
complex constant multiplier (CCM), substructure-sharing 
multiplication unit (SMU), ultra-wideband (UWB). 

                                                               
Manuscript received Apr. 22, 2009; revised Sept. 8, 2009; accepted Nov. 19, 2009. 
This work was supported by the IT R&D program of KCC/KEIT [A Study on the Radio 

Requirements of Coexistence for Dynamic Spectrum Access]. 
Sang-In Cho (phone: +82 42 860 3955, email: sicho@etri.re.kr) and Kyu-Min Kang 

(corresponding author, phone: +82 42 860 6703, email: kmkang@etri.re.kr) are with the 
Broadcasting & Telecommunications Convergence Research Laboratory, ETRI, Daejeon, Rep. 
of Korea. 

doi:10.4218/etrij.10.0109.0232 

I. Introduction 

Ultra-wideband (UWB) systems supporting various data 
rates from tens of Mb/s to hundreds of Mb/s are very suitable 
for application to short range wireless communications because 
they can share the frequency band with existing narrowband 
systems [1]-[3]. One of the candidate schemes for the high-
speed UWB physical layer (PHY) is a multiband orthogonal 
frequency-division multiplexing (MB-OFDM) scheme. One 
OFDM symbol in the MB-OFDM UWB system consists of 
128 subcarriers and 37 zero samples. The 128 subcarriers are 
composed of 100 data subcarriers, 12 pilot subcarriers, 10 
guard subcarriers, and 6 null subcarriers. Therefore, the fast 
Fourier transform (FFT) processor of the MB-OFDM UWB 
system conducts a 128-point FFT operation, where the 
sampling frequency is 528 MHz and the subcarrier frequency 
spacing is 4.125 MHz. Although the FFT period is 242.42 ns, 
the 128-point FFT operation is allowed to be performed within 
312.5 ns because a length-37 zero-padded suffix duration 
(70.08 ns) is added in one OFDM symbol [3]. 

Many FFT architectures have been developed over the last 
three decades. Recently, several parallel data-path pipelined 
FFT processors for UWB applications have been developed 
[4]-[9]. A 128-point mixed-radix FFT algorithm with a four-
data-path approach, including radix-2 and radix-23 FFT 
algorithms, was presented in [4] to reduce the number of 
complex multiplications. When the 128-point FFT algorithm is 
broken into three successive FFT algorithms, that is, one radix-
2 FFT algorithm and two radix-23 FFT algorithms, the 
hardware cost of complex multipliers in the mixed-radix 
multipath delay feedback (MRMDF) FFT processor comes to 
be only 44.8% of that in a split-radix multipath delay 
commutator (SRMDC) FFT processor [4], [10]. By modifying 

A Low-Complexity 128-Point Mixed-Radix  
FFT  Processor for MB-OFDM UWB Systems 

Sang-In Cho and Kyu-Min Kang  



2   Sang-In Cho et al. ETRI Journal, Volume 32, Number 1, February 2010 

the approach proposed by K. Maharatna and others in [11], 
Y.W. Lin and others in [4] efficiently realized nontrivial 
complex multipliers, at the fourth stage among seven stages for 
the 128-point FFT operation, with nine hard-wired constant 
units. Chakraborty and others proposed a hardware-efficient 
complex constant multiplier (CCM) structure in [7]. Although 
alternative FFT architectures for UWB applications have also 
been discussed in [8] and [9], the hardware cost is still high due 
to several nontrivial complex multiplications needed at two 
stages for the 128-point FFT operation. 

To further reduce the hardware complexity and power 
consumption, Cho and others recently presented a four-parallel 
data-path 128-point mixed-radix decimation-in-frequency (DIF) 
FFT processor operating at over 132 MHz in [5]. In the proposed 
FFT processor, nontrivial complex multiplication operations are 
only needed at the fourth stage by breaking up the 128-point FFT 
algorithm into two FFT algorithms, namely, radix-24 FFT and 
radix-23 FFT algorithms. Because a relatively large number of 
constant multipliers are required to implement twiddle factors 
(TFs) at the end of each stage in a conventional radix-24 FFT 
architecture [12], a modified radix-24 FFT structure without 
constant multipliers at the third stage is presented. However, the 
proposed FFT architecture was not fully analyzed in [5]. There 
were also mistakes in the figures of [5]. In this paper, we present 
mathematical formulation and analysis of the proposed 128-
point mixed-radix FFT algorithm. Detailed characteristics of the 
proposed FFT processor are also analyzed. The amended figures 
of the signal flow graph, butterfly units (BUs), and CCMs of the 
proposed FFT processor are given. We compare the hardware 
complexity of the proposed FFT processor and several existing 
128-point FFT architectures with four parallel data paths. 
Multiplication units using a substructure-sharing scheme are 
additionally suggested to efficiently implement the constant 
coefficient multipliers with shift operations and additions [13], 
[14]. 

The organization of this paper is as follows. The mathematical 
formulations of the 128-point mixed-radix FFT algorithm are 
given in section II. In section III, we describe the proposed FFT 
architecture with four parallel data paths. The hardware 
complexity of the proposed FFT architecture is compared with 
that of the existing 128-point FFT architectures for MB-OFDM 
UWB systems in section IV. Conclusions are given in section V. 

II. 128-Point Mixed-Radix FFT Algorithm 

Given a length-N complex input sequence x(n), its discrete 
Fourier transform (DFT) can be described as 

 
1

0
( ) ( ) ,     0,1, , 1

N
nk
N

n
X k x n W k N

−

=
= = −∑ ,      (1) 

where (2 / )nk j nk N
NW e π−=  is the TF, k is a frequency index, and 

n is a time index. As reported in many works [4]-[12], a  
hardware-efficient mixed-radix FFT algorithm should be 
employed to reduce the number of complex multiplications 
because the 128-point FFT is not at a power of 4 or 8. In this 
section, we present a modified radix-24 DIF FFT algorithm 
for stages 1 to 4 and a radix-23 DIF FFT algorithm for stages 
5 to 7. 

1. Modified Radix-24 FFT Algorithm 

To derive a modified radix-24 DIF FFT algorithm, consider 
the first 4 steps of the decomposition of an N-point FFT 
(N=128). By a five-dimensional linear index map, indices k 
and n are denoted by 

 
1 2 3 4 5

1 2 3 4 5

2 4 8 16 ,

        , , , 0,1;    0, , 1,
16

k k k k k k
Nk k k k k

= + + + +

= = −
         

(2)
 

 
1 2 3 4 5

1 2 3 4 5

,
2 4 8 16

        , , , 0,1;    0, , 1.
16

N N N Nn n n n n n

Nn n n n n

= + + + +

= = −
         

(3)
 

Using (2) and (3), (1) can be rewritten as  

5 4 3 2 1

1 2 3 4 5 1 2 3 4 5

5 1 2 3 4 5 5

5

1 2 3 4 5

1 1 1 1 116

1 2 3 4 5
0 0 0 0 0

( )( 2 4 8 16 )
2 4 8 16

1
16

( 2 4 8 )
/16 5 1 2 3 4 /16

0

( 2 4 8 16 )

  ( )
2 4 8 16

  ( , , , , ) .

N

n n n n n

N N N Nn n n n n k k k k k
N

N

n k k k k n k
N N N

n

X k k k k k

N N N Nx n n n n n

W

H n k k k k W W

−

= = = = =

+ + + + + + + +

−
+ + +

=

+ + + +

= + + + +

⋅

=

∑ ∑ ∑ ∑ ∑

∑

   (4) 

After some straightforward calculation, we have the fourth 
butterfly unit as 

 
1 2 3 4

/16 5 /16 5 1 2 3 4

( 2 4 )
/8 5 /8 516 2

( ) ( , , , , )

 ( ) ( ) ,
16

N N

k k k k
N N

H n H n k k k k
NH n W H n W+ +

=

= + +

   (5) 

where the third butterfly unit HN/8(n), the second butterfly unit 
HN/4(n), and the first butterfly unit HN/2(n) are obtained by  

 
31 2

/8 /8 1 2 3

( 2 )
/ 4 / 48 2

( ) ( , , , )

( ) ( ) ,
8

N N

kk k
N N

H n H n k k k
NH n W H n W+

=

= + +
    

(6)
 



ETRI Journal, Volume 32, Number 1, February 2010 Sang-In Cho et al.   3 

 1 2

/ 4 / 4 1 2

/ 2 / 24 2
TF for stage 1

( ) ( , , )

( )       ( ) ,
4

N N

k k
N N

H n H n k k
NH n W H n W

=

= + ⋅ +   (7) 

 1
/ 2 / 2 1 2( ) ( , ) ( ) ( ) .

2
k

N N
NH n H n k x n x n W= = + +        (8) 

In the conventional radix-24 FFT architecture [12], a 
relatively large number of multipliers are needed to implement 
the TFs, 1 2 3( 2 4 )

16 ,k k kW + +  at the end of the third stage. To 
effectively eliminate multipliers in the third stage of the 
conventional radix-24 FFT architecture, we move some parts, 

1 2( 2 )
16 ,k kW +  of the TFs at the end of the third stage to the end of 

the second stage. Then, the forth butterfly unit becomes 

3 4
/16 5 /8 5 /8 54 2

TF for stage 3

( ) ( )       ( ) ,
16

k k
N N N

NH n H n W H n W= + ⋅ +  (9) 

where the third butterfly unit /8 5( )NH n  is expressed as 

1 2

31 2

( 2 )
/16

/8 5 16
TF for stage 2

( 2 )
/ 4 / 48 2

TF for stage 2

( )

               ( ) ( ) .
8

n k k
N

N

kk k
N N

H n W

NH n W H n W

⎢ ⎥ +⎢ ⎥⎣ ⎦

+

=

⎧ ⎫
⎪ ⎪⋅ + +⎨ ⎬
⎪ ⎪⎩ ⎭

(10)

 

Note that ⋅⎢ ⎥⎣ ⎦  is the floor function, which returns the largest 
integer less than or equal to its argument value. 

2. Radix-23 FFT Algorithm 

In this subsection, we further decompose the butterfly of 
radix-8 into three stages by adopting a radix-23 FFT algorithm. 
Let 

 5 1 2 3 4

/16 5 /16 5 1 2 3 4
( 2 4 8 )

/16 5

TF for stage 4

( ) ( , , , , )

( ) ,
N N

n k k k k
N N

G n G n k k k k

H n W + + +

=

=      (11) 

and 
 5 5 6 7 5 6 72 4 ,      , , 0,1,k k k k k k k= + + =        (12) 

 5 5 6 7 5 6 74 2 ,      , , 0,1.n n n n n n n= + + =        (13) 

Using (11)-(13), (4) can be rewritten as 

7 6 5

5 6 7 5 6 7

5 6 7

1 2 3 4 5 6 7
1 1 1

/16 5 6 7
0 0 0

(4 2 )( 2 4 )
8

( 2 )
/ 64 / 648 2

TF for stage 6

( 2 4 8 16 32 64 )

    (4 2 )

                         

    (0) (1) ,

N
n n n

n n n k k k

k k k
N N

X k k k k k k k

G n n n

W

G W G W

= = =

+ + + +

+

+ + + + + +

= + +

⋅

= +

∑ ∑ ∑
       

(14) 

where 

 5 6

/ 64 / 64 5 6

/32 /324 2
TF for stage 5

( ) ( , , )

( )       ( ) ,
64

N N

k k
N N

G n G n k k
NG n W G n W

=

= + ⋅ + (15) 

5

/32 / 32 5

/16 /16 2

( ) ( , )

( ) ( ) .
32

N N

k
N N

G n G n k
NG n G n W

=

= + +
          (16) 

We break up the 128-point DFT into a 16-point DFT and an 8-
point DFT, where the 16-point and 8-point DFTs are 
implemented by applying the modified radix-24 FFT algorithm 
and radix-23 FFT algorithm, respectively.  

Note that the inverse FFT (IFFT) of a length-N complex 
sequence x(n) can be obtained by 

 
*1

*

0

1( ) ( )
N

nk
N

k
x n X k W

N

−

=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∑ .           (17) 

The IFFT can be performed by taking the complex conjugate 
of the input data first and then the outgoing data without 
changing any coefficients in the original FFT algorithm [4]. 

III. Four-Parallel Data-Path FFT Architecture 

1. Proposed Four-Parallel Data-Path Mixed-Radix FFT 
Architecture 

Because the sampling rate of the analog-to-digital (A/D) 
converter is 528 MHz in the MB-OFDM UWB system, it is 
not easy to design a receiver structure with a single data-path 
using current CMOS process technologies. A four-parallel  
data-path receiver structure including an FFT block and a 
Viterbi decoder can be considered to limit the system clock of 
the baseband modem core to a maximum of 132 MHz for 
practical VLSI implementation [15], [16]. In this paper, we 
propose a hardware-efficient 128-point mixed-radix FFT 
architecture with four data paths to meet the high-speed 
requirements. The signal flow graph of the proposed four-
parallel data-path 128-point FFT processor is shown in Fig. 1, 
where the input sequence is broken into four parallel data 
streams. The order of the four parallel input sequences of the 
proposed FFT processor is x(4m), x(4m+1), x(4m+2), and 
x(4m+3), where 0,1, ,31.m =  The radix-2 butterfly unit is 
simplified as shown in Fig. 2. Figure 3 shows a block diagram 
of the proposed four-parallel data-path 128-point FFT 
processor. The proposed FFT architecture consists of butterfly 
units (BU1, BU2, and BU3), complex constant multipliers 
(CCM1, CCM2, and CCM3), complex booth multipliers  



4   Sang-In Cho et al. ETRI Journal, Volume 32, Number 1, February 2010 

 

Fig. 1. Signal flow graph of the proposed four-parallel data-path 128-point mixed-radix FFT processor. 

x(0)
x(4)

x(12)
x(16)
x(20)
x(24)
x(28)
x(32)
x(36)
x(40)
x(44)
x(48)
x(52)
x(56)
x(60)
x(64)
x(68)
x(72)
x(76)
x(80)
x(84)
x(88)
x(92)
x(96)

x(100)
x(104)
x(108)
x(112)
x(116)
x(120)
x(124)
x(128)

x(1)
x(5)
x(9)

x(13)
x(17)
x(21)
x(25)
x(29)
x(33)
x(37)
x(41)
x(45)
x(49)
x(53)
x(57)
x(61)
x(65)
x(69)
x(73)
x(77)
x(81)
x(85)
x(89)
x(93)
x(97)

x(101)
x(105)
x(109)
x(113)
x(117)
x(121)
x(125)

x(2)
x(6)

x(10)
x(14)
x(18)
x(22)
x(26)
x(30)
x(34)
x(38)
x(42)
x(46)
x(50)
x(54)
x(58)
x(62)
x(66)
x(70)
x(74)
x(78)
x(82)
x(86)
x(90)
x(94)
x(98)

x(102)
x(106)
x(110)
x(114)
x(118)
x(122)
x(126)

x(3)
x(7)

x(11)
x(15)
x(19)
x(23)
x(27)
x(31)
x(35)
x(39)
x(43)
x(47)
x(51)
x(55)
x(59)
x(63)
x(67)
x(71)
x(75)
x(79)
x(83)
x(87)
x(91)
x(95)
x(99)

x(103)
x(107)
x(111)
x(115)
x(119)

Stage 1 

-j 
-j 
-j 
-j 
-j 
-j 
-j 
-j 
-j 
 

-j 
-j 
-j 
-j 
-j 
-j 
-j 
-j 

-j 
-j 
-j 
-j 
-j 
-j 
-j 
-j 

-j 
-j 
-j 
-j 
-j 
-j 
-j 
-j 

W(16) 
W(16) 

-j 
-j 

-j-W(16) 
-j-W(16) 

W(8) 
W(8) 
W(16) 
W(16) 
W(24) 
W(24) 

W(24) 
W(24) 
-j-W(16) 
-j-W(16) 
W(8) 
W(8) 

W(16) 
W(16) 

-j 
-j 

-j-W(16) 
-j-W(16) 

W(8) 
W(8) 
W(16) 
W(16) 
W(24) 
W(24) 

W(24) 
W(24) 

-j-W(16) 
-j-W(16) 
-W(8) 
-W(8) 

W(16) 
W(16) 

-j 
-j 

-j-W(16) 
-j-W(16) 

W(8) 
W(8) 
W(16) 
W(16) 
W(24) 
W(24) 

W(24) 
W(24) 

-j-W(16) 
-j-W(16) 

-W(8) 
-W(8) 

W(16) 
W(16) 

-j 
-j 

-j-W(16) 
-j-W(16) 

W(8) 
W(8) 
W(16) 
W(16) 
W(24) 
W(24) 

W(24) 
W(24) 

-j-W(16) 
-j-W(16) 

-W(8) 
-W(8) 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
-j 

-j 
 

W(16)
 

-j-W(16)
 

W(8) 
 

-j-W(8) 
 

W(24) 
 

-j-W(24)
 

W(4) 

-j-W(4) 
 

W(20) 
 

-j-W(20)
 

W(12) 
 

-j-W(12)
 

W(28) 
 

-j-W(28)
 

W(8) 
-j-W(8) 
W(4) 
W(20) 
W(12) 

-j-W(28)
W(2) 
W(10) 
W(10) 

-j-W(18)
W(6) 
W(30) 
W(14) 
-W(6) 
W(1) 
W(5) 
W(9) 

-j-W(13)
W(5) 
W(25) 
W(13) 
-W(1) 
W(3) 
W(5) 
W(1) 

-j-W(23)
W(7) 

-j-W(3) 
W(15) 
-W(11) 

W(16) 
-j-W(16)

W(8) 
W(24) 
W(24) 
-W(8) 
W(4) 
W(12) 
W(20) 

-j-W(28)
W(12) 
-j-W(4) 
W(28) 
-W(20) 
W(2) 
W(6) 
W(18) 

-j-W(22)
W(10) 
W(30) 
W(26) 
-W(14) 
W(6) 
W(18) 
W(22) 
-W(2) 
W(14) 

-j-W(10)
W(305) 
-W(26) 

W(24) 
-j-W(24)
W(12) 
W(28) 
-j-W(4) 
-W(20) 
W(6) 
W(14) 
W(30) 
-W(6) 
W(18) 

-j-W(10)
-j-W(10)
j-W(2) 
W(3) 
W(7) 
W(27) 

-j-W(31)
W(15) 
-j-W(3) 
-j-W(7) 
-W(27) 
W(9) 
W(21) 
-j-W(1) 
-W(13) 
W(21) 

-j-W(17)
-j-W(13)
j-W(9) 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 

-j 
 

-j 
 

-j 
 

-j 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

-j 
 

W(16) 
 

-j-W(16) 
 

X(0) 
X(64) 
X(32) 
X(96) 
X(16) 
X(80) 
X(48) 
X(112)
X(8) 
X(72) 
X(40) 
X(104)
X(24) 
X(88) 
X(56) 
X(120)
X(4) 
X(68) 
X(36) 
X(100)
X(20) 
X(84) 
X(52) 
X(116)
X(12) 
X(76) 
X(44) 
X(108)
X(28) 
X(92) 
X(60) 
X(124)
X(2) 
X(66) 
X(34) 
X(98) 
X(18) 
X(82) 
X(50) 
X(114)
X(10) 
X(74) 
X(42) 
X(106)
X(26) 
X(90) 
X(58) 
X(122)
X(6)
X(70) 
X(38) 
X(102)
X(22) 
X(86) 
X(54) 
X(118)
X(14) 
X(78) 
X(46) 
X(110)
X(30) 
X(94) 
X(62) 
X(126)
X(1) 
X(65) 
X(33) 
X(97) 
X(17) 
X(81) 
X(49) 
X(113)
X(9) 
X(73) 
X(41) 
X(105)
X(25) 
X(89) 
X(57) 
X(121)
X(5) 
X(69) 
X(37) 
X(101)
X(21) 
X(85) 

X(117)
X(13) 
X(77) 
X(45) 
X(109)
X(29) 
X(93) 
X(61) 
X(125)
X(3) 
X(67) 
X(35) 
X(99) 
X(19) 
X(83) 
X(51) 
X(115)
X(41) 
X(75) 
X(43) 
X(107)
X(27) 
X(91) 
X(59) 

X(123)
X(7) 
X(71) 
X(39) 
X(103)
X(23) 
X(87) 
X(55) 
X(119)
X(15) 
X(79) 
X(47) 
X(111)
X(31) 
X(95) 
X(63) 
X(127)
 

X(53) 

Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

x(123)
x(127)

W(m) denotes Wm
128 for m=1,2,…,31. 

Modified radix-24 Radix-23 

 

 

Fig. 2. Block diagram of the radix-2 butterfly unit. 

+

+

: 2’s complement operation 

In1 

In2 

Out1 

Out2 

In1 

In2 

Out1

Out2
2’s 

2’s 

 
 
(CBMs), and registers [5], [17]. As discussed in section II, the 
proposed FFT architecture is based on both the modified  

radix-24 and the radix-23 DIF FFT algorithms in order to 
reduce the number of multipliers. The proposed FFT 
architecture actually requires multipliers in three stages, namely, 
stages 2, 4, and 6. The other stages performing –j multiplication 
arithmetic can be implemented by simply exchanging the 
imaginary value with the 2’s complement of the real value 
without actual multiplication operation (see Fig. 4(b)). 

2. Butterfly Units 

The proposed FFT architecture employs three kinds of  



ETRI Journal, Volume 32, Number 1, February 2010 Sang-In Cho et al.   5 

 

Fig. 3. Block diagram of the proposed four-parallel data-path 128-point mixed-radix FFT processor. 

BU1–BU3: Butterfly units (Type I–III) 
CCM1–CCM3: Complex constant multipliers (Type I–III)
CBM: Complex booth multiplier  

TF2 (Twiddle factor for stage 2): 1 2 3 4( 2 )(2 )
16

k k k kW + +   

TF4 (Twiddle factor for stage 4): 5 1 2 3 4( 2 4 8 )
128
n k k k kW + + +  

BU

BU

BU

Pipeline 

CBM

CBMCCM1 

TF2 

BU

BU 

16D 

BU2 

8D 

BU1 

4D 

BU2 

2D

BU1

TF4 D

BU3 

16D 

BU2 

8D 

BU1 

4D 

BU2 

TF4

CCM1 

TF2 

CBM

16D 

BU2 

8D 

BU1 

4D 

BU2 

TF4

CCM1 

TF2 

CBM

16D 

BU2 

8D 

BU1 

4D 

BU2 

TF4

CCM1 

TF2 

Modified radix-24 Radix-23 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

…X(8)X(16)X(0)

…x(9)x(5)x(1) 

…x(10)x(6)x(2) 

…x(11)x(7)x(3) 

BU3

…X(72)X(80)X(64)

BU3 BU3

…X(40)X(48)X(32)

…X(104)X(112)X(96)

…x(8)x(4)x(0) 

5k
8W

CCM2 

5
8
kj W− ⋅

CCM3 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

2D

2D

2D

D

D

D

D 

D 

D 

D 

D 

D 

D 

D BU2

BU2

BU1

BU1

BU1

BU1

BU1 D

 
butterfly units (BU1, BU2, and BU3). The butterfly units 
perform complex addition and complex subtraction with the 
two complex data inputs as shown in Figs. 4(a) to (c). A 
complex input from the first-in-first-out (FIFO) buffer and an 
incoming complex input are utilized to conduct complex 
addition and complex subtraction in the BU1 of Fig. 4(a). One 
of the two complex outputs in the BU1 is stored in the FIFO 
buffer and the other output is passed to the next stage. The BU2 
in Fig. 4(b) is constructed by adding a –j multiplication unit at 
the end of the BU1. The BU3 of Fig. 4(c) is a conventional 
radix-2 butterfly unit. 

3. Complex Constant Multipliers 

Figures 5(a) to (c) show three kinds of CCMs used for the 
proposed FFT architecture. Four CCM1s are employed in 
stage 2, and one CCM2 and one CCM3 are employed in stage 
6 for the proposed FFT architecture, while four nontrivial 
multipliers (CBMs) are employed in stage 4. Seven kinds of 
TFs are needed at the end of stage 2 in the proposed FFT 
architecture. In the CCM1 of stage 2, the multiplication 
operations of the complex input and the TFs, 1, 1

8 ,W  –j, 
1

8 ,jW−  1
16 ,W  3

16 ,W  and 1
16 ,W−  are conducted using four 

control signals. The TF selection methods in CCM1, CCM2, 
and CCM3 with control signals are given in Table 1. Note that 
the seven TFs correspond to the trigonometric functions of 1, –j, 
cos( / 8),π sin( /8),π andcos( / 4).π  CCM1 is composed of 
six real multipliers, three 2’s complement logics, two real 

adders, and ten multiplexers. In Fig. 5(a), when the twiddle  
factor is 1

16±W  or 3
16 ,W  four constant coefficient fixed-width 

multipliers employing cos( / 8)π  or sin( / 8)π  are utilized, 
whereas two constant coefficient fixed-width multipliers 
employing cos( / 4)π  are used when the twiddle factor is 

1
8W  or 1

8jW− . The multiplication output of CCM2 in Fig. 
5(b) is calculated by { }5 5In1 cos( / 4) sin( / 4)k j kπ π× −  with 
k5=0 or 1. The multiplication output of CCM3 in Fig. 5(c) is 
equivalent to the output of the CCM2 multiplied by –j. As 
discussed in [4], CCM2 or CCM3 with 10-bit word length can 
be implemented by using ten real adders and two multiplexers. 
In CCM1, six real multipliers can also be implemented using 
24 real adders and shift operations. Accordingly, CCM1 can be 
implemented using 26 real adders and 10 multiplexers. The 
CCM1 architecture is approximately three times more complex 
than the CCM2 or CCM3 architecture. 

In many FFT processors, multipliers are implemented so 
that the resultant bit width of the multiplication output 
remains the same as that of their input. Accordingly, a round-
off error may occur by shortening the bit width of the 
multiplication output. A fixed-width modified booth 
multiplier in [17] and a fixed-width canonic signed digit 
multiplier in [18] use error compensation bias schemes to 
efficiently compensate for the round-off error. Note that the 
CBM employed in stage 4 of the proposed FFT architecture 
is composed of two booth encoders, four partial product 
generators, several adders, and a read-only memory (ROM), 
which is detailed in [6] and [17]. 



6   Sang-In Cho et al. ETRI Journal, Volume 32, Number 1, February 2010 

 

Fig. 4. Butterfly units: (a) type I (BU1), (b) type II (BU2), and (c) 
type III (BU3). 

Complex input 
from buffer  

Complex output 
to buffer  

0 
1 

Re(In1) 

Im(In1) 

Re(In2) 

Im(In2) 

2’s 

2’s 

Re(Out1)

Im(Out1)

Re(Out2)

Im(Out2)

BU1_sel 

(a) 

Complex input 
from buffer  

Complex output 
to buffer  

0
1

0
1

0
1

0
1

0 
1 

0 
1 

2’s 

Re(In1) 

Im(In1) 

Re(In2) 

Im(In2) 

Re(Out2) 

Im(Out2) 

BU2_sel1 BU2_sel2

-j mult. unit
Re(Out1) 

Im(Out1) 

(b) 

Re(In1) 

Im(In1) 

Re(In2) 

Im(In2) 

Re(Out1) 

Im(Out1) 

Re(Out2) 

Im(Out2) 
2’s

2’s

(c) 

2’s 

0 
1 

0 
1 

0 
1 

2’s 

 
 

Table 1. Selection of the twiddle factors in CCM1, CCM2, and
CCM3.  

Twiddle factor 1 1
8W  –j 1

8jW−  1
16W  3

16W 1
16W−

CCM1_sel1 0 0 0 0 0 1 0 

CCM1_sel2 x† 1 x 1 0 0 0 

CCM1_sel3 0 1 0 1 1 1 1 

CCM1_sel4 0 0 2 2 0 3 1 

CCM2_sel1 0 1 - - - - - 

CCM3_sel1 - - 0 1 - - - 

 
† x denotes don’t care value. 

 

Fig. 5. Complex constant multipliers: (a) type I (CCM1), (b) type 
II (CCM2), and (c) type III (CCM3). 

0
1

a

b

c

0
1
2
3

0
1

a

b

0
1
2
3

0
1

0
1

c

0 
1 

0 
1 0

1

0
1

Re(In1)

 2’s 

2’s 

2’s 

Re(Out1)

Im(Out1)

CCM1_sel1 CCM1_sel2 CCM1_sel3 CCM1_sel4

cos , sin , cos
8 8 4

a b cπ π π
= = =

(a) 

c

0 
1 

0 
1 

c

Re(In1)

Im(In1)

Re(Out1)

Im(Out1)

CCM2_sel 

cos
4

c
π

=

(b) 

c

c

0 
1 

0 
1 

2’s

2’s 

2’s

Re(In1)

Im(In1)

cos
4

c
π

= Im(Out1)

Re(Out1)

CCM3_sel 

(c) 

 
 

4. Substructure-Sharing Multiplication Units 

Because six real multipliers are needed to implement CCM1 
as shown in Fig. 5(a), the hardware complexity of CCM1 is 
rather high. In this paper, we propose an enhanced CCM1 with 
two substructure-sharing multiplication units (SMUs), shown 
in Fig. 6, to reduce the hardware complexity of CCM1. The 
SMU of Fig. 6(a) is utilized for the multiplication operations of 
a real input value and three constant coefficients, cos( / 8),π  
sin( / 8),π and cos( / 4).π These three multiplication operations 
can be performed by simply using six additions and eight shift 
operations as shown in Fig. 6(b) if the proposed FFT processor 
is implemented with a 10-bit word length. Figure 7 shows an 
SMU for the enhanced CCM2 and CCM3. In 10-bit word 



ETRI Journal, Volume 32, Number 1, February 2010 Sang-In Cho et al.   7 

 

Fig. 6. Enhanced complex constant multiplier: (a) enhanced 
CCM1 and (b) substructure-sharing multiplication unit
(SMU) for the enhanced CCM1. 

0 
1 0

1
2
3

0 
1 

0
1
2
3

0 
1 

0 
1 

0 
1 

0 
1 0 

1 

0 
1 

y2 
ay2 

by2 

cy2 

ay1 

by1 

cy1 

SM
U

 
SM

U
 

y1 Re(In1) 

Im(In1) 2’s 

2’s 

2’s 

Re(Out1)

Im(Out1)

CCM1_sel1 CCM1_sel2 CCM1_sel3 CCM1_sel4

cos , sin , cos
8 8 4

a b cπ π π
= = =

(a) 

y 

ay

by

cy

2 

2 

1 

4 2 
1 

7 

2 

Coefficients Decimal 2’s complement

0 0 0 0
0 0 0 0 0 0

0 1 0 0 0

0 1 
1 11 1 

1 0 

0 0
0 1

1

0 1 0 0 0 1

0 0 0 0 0 1

0 0 
1 1 

1

0 0

1 0

2’s complement decomposition

k : k-bit right-shift operation 

cos
8

a π
=

sin
8

b π
=

cos
4

c π
=

0.9239 

0.3827 

0.7071 

0 1 1 1 0 1 1 0 0 1

0 0 1 1 0 0 0 0 1 1

0 1 0 1 1 0 1 0 1 0

(b) 

0 

 
 

 

Fig. 7. Substructure-sharing multiplication unit (SMU) for the
enhanced CCM2 and CCM3. 

z 

cz 

Coefficients Decimal 2’s complement 

0 1 0 0 1 01 1 1 0cos
4

c
π

= 0.7071 

1 

3 

8 

3 

 
 
length implementation, by employing the SMU scheme, CCM2 
or CCM3 can be designed using only eight adders and two 
multiplexers. As such, the hardware complexity of CCM1, 
CCM2, and CCM3 can be significantly reduced using the 
proposed multiplierless multiplication units with the 
substructure-sharing scheme. 

Table 2. Implementation results of the proposed FFT processor. 

Word length 8 bits 10 bits 12 bits 

SQNR (dB) 24 35 47 

No. of gates1) 71,250 80,100 88,200 

Operating speed (MHz) 272 250 225 

Processing rate (Msample/s) 1,088 1,000 900 

Power (mW) 2) 98 112 122 

 1) Based on 2 1× NAND gates.  
2) Power consumption is estimated by Synopsys’ Power Compiler. 

 
IV. Implementation Results 

We determined the internal word length of the proposed FFT 
processor using a fixed-point simulation with MATLAB before 
hardware implementation. After the word length of the 
proposed FFT processor was chosen, the FFT architecture was 
modeled in Verilog HDL and functionally verified using a 
ModelSim simulator. Then, the FFT architecture was 
synthesized with the appropriate time and area constraints 
using the Synopsys Design Compiler. Note that the FFT 
processor was implemented and tested using Samsung    
0.18 µm CMOS technology and a standard cell library. Table 2 
compares the implementation results of the proposed FFT 
processor for three internal word lengths. The signal-to-
quantization noise ratio (SQNR) of the proposed FFT 
processor is about 24 dB when the word length is 8 bits, and 
the SQNR of the proposed FFT processor is about 47 dB when 
the word length is 12 bits. The hardware cost and power 
consumption of the proposed FFT processor are increased as 
the internal word length increases, whereas the operation clock  

 
 

Fig. 8. Output SNR for a fixed input SNR with various internal 
word lengths in the proposed FFT processor.  

4 6 8 10 12 14 16-6

-4

-2

0

2

4

6

8

10

12

Internal word length (bits) 

O
ut

pu
t S

N
R

 (d
B

) 

Input SNR = 2 dB 
Input SNR = 4 dB 
Input SNR = 6 dB 
Input SNR = 8 dB 
Input SNR = 10 dB 
Input SNR = 12 dB 

 



8   Sang-In Cho et al. ETRI Journal, Volume 32, Number 1, February 2010 

Table 3. Comparison of the proposed and existing 128-point FFT architectures. 

 Proposed FFT 
processor 

Modified C.-P. Fan 
et al. [12] Y.W. Lin et al. [4] Modified Y. Jung  

et al. [19] Z. Wang et al. [8] S. Qiao et al. [9]

Architecture Modified radix-24, 
radix-23 Radix-24, radix-23 Radix-2, radix-23 Radix-2, radix-4 Radix-4, radix-2 Radix-2, radix-8, 

radix-23 
No. of complex 

registers 
124 

(56.4%) 
124 

(56.4%) 
124 

(56.4%) 
220 

(100%) 
220 

(100%) 
148 

(67.3%) 
No. of nontrivial 

multipliers1) 
4×0.6 

(34.3%) 
4 

(57.1%) 
2+4×0.62 

(64%) 
6 

(85.7%) 
3+4 

(100%) 
2+4×0.62 

(64%) 
No. of trivial 
multipliers2) 

4×1.97+2×0.82 
(52.9%) 

4×3+6 
(100%) 

6 
(33.3%) 

6 
(33.3%) 

4×3+4 
(88.9%) 

4 
(22.2%) 

No. of complex 
adders 

48 
(100%) 

48 
(100%) 

48 
(100%) 

28 
(58.3%) 

48 
(100%) 

42 
(87.5%) 

Word length 10 bits - 10 bits - - 10 bits 
Throughput rate 
(R: clock rate) 

4R 4R 4R 4R 4R 4R 

 1) The nontrivial multiplier is the conventional complex variable multiplier [12], [19].  
2) In Table 3, the number of trivial multipliers is counted as the number of the complex constant multipliers for the twiddle factor 1

8W or 3
8 ,W which is realized by shifters

and adders in the existing FFT processors [4], [11]. 

speed of the FFT processor is decreased as shown in Table 2. 
Implementation results indicate that the proposed FFT 
processor with a 10-bit internal word length can support a data 
processing rate of 1 Gsample/s with a power dissipation of  
112 mW at 250 MHz. Note that the throughput rate of the 
MRMDF FFT processor in [4] is up to 1 Gsample/s, and it 
consumes 175 mW. The power consumption of the proposed 
FFT processor is approximately 36% lower than that of the 
MRMDF FFT processor. Figure 8 shows the output signal-to-
noise ratio (SNR) for the fixed input SNR with various internal 
word lengths in the proposed FFT architecture. As the word 
length is equal to or greater than 10 bits, the output SNR is 
almost saturated, and accordingly, the quantization noise can be 
nearly ignored. Based on the simulation results, the proposed 
FFT processor is implemented with a 10-bit internal word 
length.  

Table 3 compares the hardware complexity of the proposed 
FFT processor and the existing 128-point four-parallel data-
path FFT architectures. Because the proposed FFT processor 
employs modified radix-24 and radix-23 FFT architectures, 
nontrivial multiplication operations are only needed at stage 4. 
In the proposed FFT architecture, four nontrivial complex 
multipliers at stage 4 are implemented with the CBMs 
presented in [17] with 60% of the hardware cost of 
conventional complex variable multipliers [12], [19]. In 
addition, the hardware complexities of CCM1s at stage 2 and 
CCM2 (or CCM3) at stage 6 are significantly reduced by about 
34% and 18%, respectively, by employing the proposed SMU 
architectures as compared to those of conventional CCMs. 
Note that the trivial multiplication operations of the  

 

Fig. 9. Floor plan of an MB-OFDM UWB SoC. 

MAC: medium access control 
CPU: central processing unit 
Tx: transmitter   
Rx: receiver 
CE: channel estimator 

CPU 

CPU 
memory 

Viterbi 
decoder 

 

Rx CE 
memory 

Viterbi 
decoder 

FFT/ 
IFFT

PHY Rx 
core 

MAC

Sync 

PHY Tx 
core 

AFE

Sync 
memory

PHY Tx 
memory

PHY Rx 
memory 

MAC 
Memory Memory for 

debugging 

PHY: physical layer 
FFT: fast Fourier transform 
Sync: synchronization block 
AFE: analog front-end 
IFFT: inverse FFT 

 
 
proposed FFT processor can be performed with approximately 
53% of the hardware cost of the conventional radix-24 FFT 
processor in [12]. The proposed FFT processor reduces the 
hardware complexity of complex multipliers by about 31% as 
compared to the MRMDF FFT processor in [4]. Table 3 
indicates that the proposed 128-point mixed-radix FFT 



ETRI Journal, Volume 32, Number 1, February 2010 Sang-In Cho et al.   9 

processor is a hardware-efficient structure and is therefore 
suitable for high-speed UWB applications. 

Figure 9 shows the floor plan of an MB-OFDM UWB 
system-on-a-chip (SoC) including the proposed low-
complexity 128-point mixed-radix FFT processor. The 
implemented MB-OFDM UWB SoC consists of several 
modules, namely, a medium access control (MAC), a PHY, an 
analog front-end (AFE), a central processing unit (CPU), and 
memory blocks. In our implementation, the 128-point 
FFT/IFFT block occupies about 5.1% of the silicon area of the 
PHY module. 

V. Conclusion 

In this paper, we have proposed a hardware-efficient 128-
point mixed-radix DIF FFT processor with four data paths for 
MB-OFDM UWB systems. We have derived a mixed-radix 
FFT algorithm composed of modified radix-24 FFT and radix-
23 FFT algorithms. By employing the mixed-radix FFT 
algorithm in the proposed FFT architecture, we have 
significantly reduced the number of both CCMs and CBMs. In 
addition, the hardware complexity of the proposed CCMs for 
trivial multiplications has been reduced by approximately 32% 
when compared to that of the existing CCM structures by 
adopting multiplication units using a substructure-sharing 
scheme. Implementation results have shown that the proposed 
mixed-radix FFT processor with 10-bit internal word length 
and four parallel data paths can support a data processing rate 
of up to 1.0 Gsample/s with a power dissipation of 112 mW at 
250 MHz using 0.18 µm CMOS technology. 

References 

[1] A. Batra et al., “Design of a Multiband OFDM System for 
Realistic UWB Channel Environments,” IEEE Trans. Microw. 
Theory Tech., vol. 52, no. 9, Sept. 2004, pp. 2123-2138.  

[2] K.M. Kang and S.S. Choi, “Initial Timing Acquisition for Binary 
Phase-Shift Keying Direct Sequence Ultra-wideband Transmission,” 
ETRI Journal, vol. 30, no. 4, Aug. 2008, pp. 495-505.  

[3] W. Abbott et al., Multiband OFDM Physical Layer Specification, 
Version 1.2 (draft), WiMedia Alliance, Feb. 2007. 

[4] Y.W. Lin, H.Y. Liu, and C.Y. Lee, “A 1-GS/s FFT/IFFT 
Processor for UWB Applications,” IEEE J. Solid-State Circuits, 
vol. 40, no. 8, Aug. 2005, pp. 1726-1735.  

[5] S.I. Cho, K.M. Kang, and S.S. Choi, “Implementation of 128-
Point Fast Fourier Transform Processor for UWB Systems,” Proc. 
IEEE IWCMC, Aug. 2008, pp. 210-213. 

[6] J.S. Lee et al. “A High-Speed, Low-Complexity Radix-24 FFT 
Processor for MB-OFDM UWB Systems,” Proc. IEEE ISCAS, 
May 2006, pp. 4719-4722.  

[7] T.S. Chakraborty and S. Chakrabarti, “A Reduced Area 1 GSPS 
FFT Design Using MRMDF Architecture for UWB 
Communication,” Proc. IEEE APCCAS, Nov. 2008, pp. 1128-1131.  

[8] Z. Wang et al., “A Novel FFT Processor for OFDM UWB 
Systems,” Proc. IEEE APCCAS, Dec. 2006, pp. 374-377. 

[9] S. Qiao et al., “An Area and Power Efficient FFT Processor for 
UWB Systems,” Proc. IEEE WICOM, Sept. 2007, pp. 582-585. 

[10] J. García, J.A. Michel, and A.M. Burón, “VLSI Configurable 
Delay Commutator for a Pipeline Split Radix FFT Architecture,” 
IEEE Trans. Signal Process., vol. 47, no. 11, Nov. 1999, pp. 
3098-3107. 

[11] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-Point Fourier 
Transform Chip for High-Speed Wireless LAN Application 
Using OFDM,” IEEE J. Solid-State Circuits, vol. 39, no. 3, Mar. 
2004, pp. 484-493. 

[12] C.-P. Fan, M.-S. Lee, and G.-A. Su, “A Low Multiplier and 
Multiplication Costs 256-Point FFT Implementation with 
Simplified Radix-24 SDF Architecture,” Proc. IEEE APCCAS, 
Dec. 2006, pp. 1935-1938.  

[13] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and 
Implementation, New York; John Wiley & Sons, 1999. 

[14] G. Zhong et al., “An Energy-Efficient Reconfigurable Angle-
Rotator Architecture,” Proc. IEEE ISCAS, vol. 3, May 2004, pp. 
661-664.  

[15] C.H. Shin et al., “A Design and Performance of 4-Parallel MB-
OFDM UWB Receiver,” IEICE Trans. Commun., vol. E90-B, 
no. 3, Mar. 2007, pp. 672-675.  

[16] S.W. Choi, K.M. Kang, and S.S. Choi, “A Two-Stage Radix-4 
Viterbi Decoder for Multiband OFDM UWB Systems,” ETRI 
Journal, vol. 30, no. 6, Dec. 2008, pp. 850-852.  

[17] K.J. Cho et al., “Design of Low-Error Fixed-Width Modified 
Booth Multiplier,” IEEE Trans. VLSI Syst., vol. 12, no. 5, May 
2004, pp. 522-531.  

[18] S.M. Kim, J.G. Chung, and K.K. Parhi, “Low Error Fixed-Width 
CSD Multiplier with Efficient Sign Extension,” IEEE Trans. 
Circuits & Systems II, vol. 50, no. 12, Dec. 2003, pp. 984-993.  

[19] Y. Jung, H. Yoon, and J. Kim, “New Efficient FFT Algorithm 
and Pipeline Implementation Results for OFDM/DMT 
Applications,” IEEE Trans. Consumer Elect., vol. 49, no. 1, Feb. 
2003, pp. 14-20. 

 
Sang-In Cho received the BS and MS degrees 
in information and telecommunication 
engineering from Chonbuk National University, 
Korea, in 1997 and 1999, respectively. Since 
1999, he has been with the Electronics and 
Telecommunications Research Institute (ETRI), 
Daejeon, Korea. His current research interests 

include VLSI digital signal processing and digital communications 
with applications to UWB transmission systems. 



10   Sang-In Cho et al. ETRI Journal, Volume 32, Number 1, February 2010 

Kyu-Min Kang received the BS, MS, and PhD 
degrees in electronic and electrical engineering 
from Pohang University of Science and 
Technology (POSTECH), Gyeongbuk, Korea, 
in 1997, 1999, and 2003, respectively. Since 
2003, he has been with the Electronics and 
Telecommunications Research Institute (ETRI), 

Daejeon, Korea. His current research interests include spectrum 
engineering, digital signal processing, and high-speed digital 
transmission systems.  

 
 
 


