• 제목/요약/키워드: Modified Strain

검색결과 785건 처리시간 0.03초

Modified Equivalent Radius Approach for Soil Damping Measurement in Torsional Testing

  • Bae, Yoon-Shin
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.39-43
    • /
    • 2008
  • Determination of strain associated with shear modulus and damping ratio during torsional test is complicated. This is due to nonuniform stress-strain variation occurring linearly with radius in a soil specimen in torsion. A conventional equivalent radius approach proposed by Chen and Stokoe appears to be adequate for evaluating strain associated with shear modulus at low to intermediate strain levels. This approach is less accurate for damping measurement, particularly at high strain. Modified equivalent radius approach was used to account for the nonuniform stress-strain effect more precisely. The modified equivalent radius approach was applied for hyperbolic, modified hyperbolic, and Ramberg-Osgood models. The results illustrate the usefulness of the modified equivalent radius approach and suggest that using a single value of equivalent radius ratio to calculate strains is not appropriate.

Modified Equivalent Radius Approach in Evaluating Stress-Strain Relationship in Torsional Test

  • Bae, Yoon-Shin
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.97-103
    • /
    • 2008
  • Determination of stress-strain relationship in torsional tests is complicated due to nonuniform stress-strain variation occurring linearly with the radius in a soil specimen in torsion. The equivalent radius approach is adequate when calculating strain at low to intermediate strains, however, the approach is less accurate when performing the test at higher strain levels. The modified equivalent radius approach was developed to account for the problem more precisely. This approach was extended to generate the plots of equivalent radius ratio versus strain using modified hyperbolic and Ramberg-Osgood models. Results showed the effects of soil nonlinearity on the equivalent radius ratio curves were observed. Curve fitting was also performed to find the stress-strain relationship by fitting the theoretical torque-rotation relationship to measured torque-rotation relationship.

API X65 강의 연성파괴 해석을 위한 삼축응력 영향을 고려한 파괴변형률 기준 개발 (Development of Stress-Modified Fracture Strain Criterion for Ductile Fracture of API X65 Steel)

  • 오창균;김윤재;박진무;백종현;김우식
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1621-1628
    • /
    • 2005
  • This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain finite element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed.

Monitoring of bridge overlay using shrinkage-modified high performance concrete based on strain and moisture evolution

  • Yifeng Ling;Gilson Lomboy;Zhi Ge;Kejin Wang
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.155-174
    • /
    • 2023
  • High performance concrete (HPC) has been extensively used in thin overlay for repair purpose due to its excellent strength and durability. This paper presents an experiment, where the sensor-instrumented HPC overlays have been followed by dynamic strain and moisture content monitoring for 1 year, under normal traffic. The vibrating wire and soil moisture sensors were embedded in overlay before construction. Four given HPC mixes (2 original mixes and their shrinkage-modified mixes) were used for overlays to contrast the strain and moisture results. A calibration method to accurately measure the moisture content for a given concrete mixture using soil moisture sensor was established. The monitoring results indicated that the modified mixes performed much better than the original mixes in shrinkage cracking control. Weather condition and concrete maturity at early age greatly affected the strain in concrete. The strain in HPC overlay was primarily in longitudinal direction, leading to transverse cracks. Additionally, the most moisture loss in concrete occurred at early age. Its rate was very dependent on weather. After one year, cracking survey was carried out by vision to verify the strain direction and no cracks observed in shrinkage modified mixes.

316L 스테인리스강의 상온 반복 거동에 대한 수정 다층 모델의 적용성 검토 (Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature)

  • 임재용;이순복
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1603-1611
    • /
    • 2004
  • The validity of 'modified overlay model' to describe the cyclic behavior of annealed 316L stainless steel at room temperature was investigated. Material parameters(~f$_{i}$, m$_{i}$b, η, E) fur the model were obtained through constant strain amplitude test. The strain amplitude dependency of elastic limit and cyclic hardening, which were the characteristics of this model, were considered. Eight subelements were used to describe the nonlinearity of the hysteresis loops. The calculated hysteresis curve in each condition (0.5%, 0.7%, 0.9% train amplitude test) was very close to the experimental one. Two tests, incremental step test and 5-step test, ere performed to check the validity of 'modified overlay model'. The elastic limit was saturated to the one of the highest strain amplitudes of the block in the incremental step test, so it seemed to be Masing material at the stabilized block. Cyclic hardening was successfully described in the increasing sequence of the strain amplitude in 5-step test. But, the slight cyclic softening followed by higher strain amplitude would not be able to simulate by'modified overlay model'. However, the discrepancy induced was very small between the calculated hystereses and the experimental ones. In conclusion,'Modified overlay model'was proved to be appropriate in strain range of 0.35%~ 1.0%..0%.

Analytical solution of stress-strain relationship of modified Cam clay in undrained shear

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • 제1권4호
    • /
    • pp.263-274
    • /
    • 2009
  • The modified Cam clay (MCC) model is used to study the response of virgin compressed clay in undrained compression. The MCC deviatoric stress-strain relationship is obtained in closed form. Elastic and plastic deviatoric strains are taken into account in the analysis. For the determination of the elastic strain components, both a variable shear modulus and constant shear modulus are considered. Constitutive relationships are applied to the well-known London and Weald clays sheared in undrained compression.

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique

  • Ghannadpour, S. Amir M.;Khajeh, Selma
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.393-406
    • /
    • 2022
  • In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.

Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • 제4권1호
    • /
    • pp.19-37
    • /
    • 2012
  • This paper presents the results of analytical and numerical analyses of the effects of performing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay. Closed-form solutions are obtained which allow the determination of the principal effective stresses and the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical state is not equal to the mean of the other two principal stresses, except when the clay is initially isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by means of the Almansi finite strain approach. Results are compared with published data which were determined using finite element and finite difference methods.

국부 변형률 근사를 이용한 원통형 노치시편의 피로균열 발생수명의 예측 (The Prediction of Fatigue Crack Initiation Life of Cylindrical Notch Specimens Using Local Strain Approximation)

  • 임재용;홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.791-798
    • /
    • 2004
  • Fatigue crack initiation lives of round cylindrical notch specimen were investigated. Firstly, local strain approximation methods, such as the modified incremental Neuber's rule and the modified incremental Glinka's equivalent strain energy density(ESED) rule, were used to get multiaxial stress and strain state components at the notch tip. Based on the history of local stress and strain, multiaxial fatigue models were used to obtain fatigue crack initiation lives. Because the solution of Neuber's rule and Glinka's ESED rule make the upper and lower bound of local strain approximations, fatigue crack initiation lives are expected to place between life predictions by two local strain approximations. Experimental data were compared with the fatigue crack initiation life prediction results.

동 하중에 대한 연강 재질의 변형율 속도 민감도 특성 연구 (Strain Rate Sensitive Behavior of Mild Steel Subjected to Dynamic Load)

  • 박종찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.377-382
    • /
    • 2004
  • The dynamic material characteristics on some mild steel sheets were observed. The dynamic tests were conducted on the ESH servo-hydraulic test machine. It was observed that the mechanical properties of mild steel are highly sensitive to the value of strain rate. The well known Cowper-Symonds constitutive equation was used to generalize the strain rate sensitivity effect. Modified constitutive equations were suggested to couple the strain hardening to the strain rate sensitivity. The dynamic stress-strain relationships for the mild steel sheets used in the present study were reasonably predicted using these modified constitutive equations.

  • PDF