• Title/Summary/Keyword: Modified SST Turbulence Model

Search Result 13, Processing Time 0.031 seconds

Modification of SST Turbulence Model for Computation of Oscillating Airfoil Flows (진동하는 익형 주위의 유동장 해석을 위한 SST 난류 모델의 수정)

  • Lee Bo-sung;Lee Sangsan;Lee Dong Ho
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.44-51
    • /
    • 1999
  • A modified version of SST turbulence model is suggested to simulate unsteady separated flows over oscillating airfoils. The original SST model, which shows good performance in predicting various steady flows, often results in oscillatory behavior of aerodynamic loads in large separated flow regions. It is shown that this oscillatory behavior is due to the adoption of the absolute value of vorticity in generalizing the original model. As a remedy, a modification is made such that the vorticity in the original SST model is replaced by strain rate. The present model is verified for a mild separated airfoil flow at fixed angle of incidence and for unsteady flowfields about oscillating airfoils. The results are compared with BSL model and original SST model. It is illustrated that the present model gives a better agreement with the experimental results than other two models.

  • PDF

Evaluation of the applicability of a buoyancy-modified turbulence model for free surface flow analysis based on the VOF method (VOF 기반 자유수면 흐름 해석을 위한 부력 수정 난류 모형의 적용성 평가)

  • Lee, Du Hana
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.493-507
    • /
    • 2024
  • RANS-based CFD analysis is widely applied in various engineering fields, including practical hydraulic engineering, due to its high computational efficiency. However, problems of non-physical behavior in the analysis of two phase flow, such as free surfaces, have long been raised. The two-equation turbulence models used in general RANS-based analysis were developed for single phase flow and simulate unrealistically high turbulence energy at the interface where there are abrupt changes in fluid density. To solve this issue, one of the methods recently developed is the buoyancy-modified turbulence model, which has been partially validated in coastal engineering, but has not been applied to open channel flows. In this study, the applicability of the buoyancy-modified turbulence model is evaluated using the VOF method in the open-source program OpenFoam. The results of the uniform flow showed that both the buoyancy-modified k-𝜖 model and the buoyancy-modified k-ω SST model effectively simulated the reduction of turbulence energy near the free surface. Specifically, the buoyancy-modified k-ω SST model accurately simulated the vertical velocity distribution. Additionally, the model is applied to dam-break flows to examine cases with significant surface variation and cavity formation. The simulation results show that the buoyancy-modified turbulence models produce varying results depending on the VOF method and shows non-physical behavior different from experimental results. While the buoyancy-modified turbulence model is applicable in cases with stable surface shapes, it still has limitations in general application when there are rapid changes in the free surface. It is concluded that appropriate adjustments to the turbulence model are necessary for flows with rapid surface changes or cavity formation.

Optimization of Stacking Line and Blade Profile for Design of Axial Flow Fan Blade (중첩선과 단면형상을 고려한 축류 송풍기 날개의 최적설계)

  • Samad, Abdus;Lee, Ki-Sang;Jung, Sang-Ho;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.420-423
    • /
    • 2008
  • This present work is to find optimum design of a NACA65 axial fan blade with weighted average surrogate model. The numerical analysis by Reynolds-average Navier-Stokes equations with shear stress turbulence(SST) is discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The blade aerodynamic shape is modified by six design variables for the optimization. The blade profile as well as stacking line is modified to enhance blade total efficiency. Six design variables, airfoil maximum camber, maximum camber location, leading edge radius, trailing edge radius, lean angle at 50% span and lean angle at 100% span, are selected for blade profile to enhance the total efficiency. The PBA model which is basically weighted average of the basis surrogates is used to find the optimal design in the design space from the constructed response surface model for the objective function. By the optimization, the total efficiency is increased by 1.4%.

  • PDF

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.200-208
    • /
    • 2007
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

  • PDF

Numerical Study on Effects of Geometrical Variables on Performance of A Centrifugal Compressor (원심압축기의 성능에 미치는 형상변수들의 영향에 대한 수치적 연구)

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.152-155
    • /
    • 2008
  • In this paper, the effect of modification of geometric variables on the performance of a centrifugal compressor blade has been studied numerically. The compressor contains six main blades and six splitter blades. Reynolds averaged Navier-Stokes (RANS) equations with shear stress turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The design variables from blade lean angle at tip and middle of the blade have been modified. The isentropic blade efficiency and pressure have been predicted with the variation of the variables. Frozen rotor simulation is performed and adiabatic wall condition has been used. One of the six blades of compressor has been used for simulation to reduce the computational load. Optimum number of meshes has been selected by grid-dependency test, and this is used for all the simulations with changing geometric variables. The detailed flow analysis results have been reported as well as the effects of the variables.

  • PDF

Modeling of 2D Axisymmetric Reacting Flow in Solid Rocket Motor with Preconditioning

  • Lee, S.N.;Baek, S.W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.260-265
    • /
    • 2008
  • A numerical scheme for solid propellant rocket has been studied using preconditioning method to research unsteady combustion processes for the double-base propellant with a converging-diverging nozzle. The Navier-Stokes equation is solved by dualtime stepping method with finite volume method. The turbulence model uses a shear stress transport modeling. The species equation follows up the method of Xinping WI, Mridul Kumar and Kenneth K. Kuo. A preconditioned algorithm is applied to solve incompressible regime inside the combustor and compressible flow at nozzle. Mass flux was evaluated using modified advective upwind splitting method. The simulated result the comparison a fully coupled implicit method and a semi implicit method in terms of accuracy and efficiency. This report shows the result of solid rocket propellant combustion.

  • PDF

Numerical Study of Aerodynamics of Turbine Rotor with Leading Edge Modification Near Hub (허브 측 선단 수정에 따른 터빈 로터의 공력 특성에 대한 수치적 연구)

  • Kim, Dae Hyun;Lee, Won Suk;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1007-1013
    • /
    • 2013
  • This study aims to analyze the aerodynamics when the geometry of the turbine rotor is modified. The turbine used in this study is a small engine used in the APU of a helicopter. It is difficult to improve the performance of small engines owing to the structural weakness of the blade tip. Therefore, the improvement of the hub geometry is investigated in many ways. The working fluid of a turbine is a high-temperature and high-pressure gas. The heat transfer rate of the turbine surface should be considered to avoid the destruction of blade owing to the heat load. The SST turbulence model gives an excellent prediction of the aerodynamic behavior and heat transfer characteristics when the numerical simulations are compared with the experimental results. In conclusion, the aerodynamic efficiency is improved when a bulbous design is applied to the leading edge near the hub. The endwall loss is reduced by 15%.

Passive Control of the Vortex Shedding behind a Rectangular Cylinder Near a Wall (벽면에 근접한 사각주 후면의 와류 유동장 수동제어)

  • Lee, Bo-Sung;Kim, Tae-Yoon;Lee, Do-Hyung;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.16-22
    • /
    • 2004
  • Unsteady vortex shedding behind a rectangular cylinder near a wall influences both increasing of drag and dynamic stability of heavy vehicle, bridge or building. Incompressible Averaged Navier-Stokes equation with modified ${\varepsilon}-SST$ turbulence model is adapted for investigating the flow field between the rectangular cylinder and the wall. In case the vortex shedding happens, not only the averaged maximum velocity is higher than other cases, but the position of the maximum velocity is closer to the lower surface of rectangular cylinder. On this study, it is confirmed that the vortex shedding behind a rectangular cylinder can be suppressed by the passive control method added by horizontal and vertical fences to the lower surface of rectangular cylinder.

Comparative Evaluation on the Deriving Method of the Heat Transfer Coefficient of the C-D Nozzle (축소 확대 노즐의 열전달 해석을 위한 열전달 계수 계산 및 검증)

  • Noh, Tae Won;Roh, Tae-Seong;Lee, Hyoung Jin;Lee, Hyunseob;Yoo, Phil Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • The heat transfer coefficient on the wall, which is used as a boundary condition in the thermal analysis of general contract-divergent supersonic nozzles, affects the thermal analysis accuracy of the entire nozzle. Accordingly, many methods of deriving a heat transfer coefficient have been proposed. In this study, the accuracy of each method was compared. For this purpose, the heat transfer coefficients were calculated through theoretical-based analogy methods, semi-empirical equations, and CFD simulations for the previously performed heat transfer experiment with an isothermal wall and compared with the experimental results. The results show that the Prandtl-Taylor analogy methods and the CFD results with the k-ω SST turbulence model were in good agreement with the experimental results. Furthermore, the Modified Bartz empirical formula showed an overall over-prediction tendency.