• Title/Summary/Keyword: Modified Miner's rule

Search Result 16, Processing Time 0.019 seconds

Study on the Load Properties of Main Shaft of Medium Size Wind-turbine Gearbox using Monitoring (모니터링을 이용한 중형 풍력발전기용 증속기 주축의 부하특성 분석 연구)

  • Park, Young-Joon;Lee, Geun-Ho;Lee, Jong-Won;Nam, Yoon-Su;Cha, Jong-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.378-382
    • /
    • 2007
  • To improve the reliability for a wind-turbine gearbox, the mechanical loads acting on the gearbox need to be monitored and analysed exactly. This study was conducted to identify the characteristics of torques and bending moments acting on the main shaft of the gearbox using the rainflow counting method and predict the fatigue life of the main shaft by using the modified Miner's rule. While the mean wind speed became 3.5 m/s, the life of the main shaft by the acting torques was predicted as 4.3${\times}10^6$ years, and it by the bending moments was as 2.3${\times}10^4$ years. If the life of the wind turbine was estimated as 20 years, the fatigue life of the main shaft was regarded as infinite. Also, it was suggested that the life of the main shaft must be predicted by not the torques but the bending moments.

  • PDF

Fatigue Cumulative Damage and Life Prediction of Freight Bogie using Rainflow Counting Method under Service Loading (운전하중하의 레인플로집계법을 이용한 화차 대차의 피로누적손상과 수명예측)

  • Jeon, Joo-Heon;Baek, Seok-Heum;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.114-119
    • /
    • 2004
  • Endbeam is an important structural member of freight bogie for the support of service loading. In general, more than 25 years' durability is necessary. However, endbeam occur fatigue fracture in dynamic stress concentration location because comparatively strength and stiffness are low. Therefore, structure analysis is performed to evaluate structural problem of endbeam and local strain range as durability analysis. The number of cycles is extracted concerning the bogie in operation by measurement dynamic stress time history on critical part which is crack initiation in actual fact. At this time rainflow cycle counting is used to consider change of stress for operating condition. Based on the fatigue life curves and the stress analysis, the fatigue life of the endbeam is predicted and compared with the experimentally determined fatigue life, resulting in a fairly good correlation.

  • PDF

The Fatigue Life Evaluation of Aged Continuous Welded Rail on the Urban Railway (도시철도 장기 사용레일의 피로수명 평가)

  • Kong, Sun-Young;Sung, Deok-Yong;Park, Yong-Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.821-831
    • /
    • 2013
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). In this study, we carried out fatigue tests on existing laid rails. Based on the test results, an S-N curve expressing the remaining life of laid rails at a fracture probability of 50% was obtained using weighted probit analysis suitable for small-sample fatigue data sets. As rails used for testing had different histories in terms of accumulated tonnage, the test data were corrected to average out the accumulated tonnage. We estimated the remaining service lives for laid rails on the urban railway using equations developed in the past to estimate rail base bending stress and that surface irregularities into consideration. Therefore, estimating the remaining service life of laid rails showed that the rail replacement period could be extended over 200 MGT, although it is necessary to remove longitudinal rail surface irregularities at welds by grinding. Also, the fatigue test results under fatigue limit, Haibach's rule appling half slope of S-N curve under the fatigue limit was considered more reasonable than modified Miner's rule for estimating rail fatigue life.

Fatigue Cumulative Damage and Life Prediction of Uncovered Freight Car Under Service Load using Rainflow Counting Method (운전하중하의 레인플로집계법을 이용한 철도차량 무개화차의 피로누적손상과 수명예측)

  • Baek, Seok-Heum;Lee, Kyoung-Young;Mun, Sung-Jun;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An end beam is one of the most important structural members supporting uncovered freight under in-service loading. In general, it needs to endure over 25 years. However fatigue fracture has occurred at dynamic stress concentration location of the end beam because user's specifications demanded high speed and vehicle manufacturer made the uncovered freight car with comparatively low strength and stiffness. For durability analysis, finite element analysis is performed to evaluate the problem of uncovered freight structure and local strain. The uncovered freight car was operated on actual problematic railroad line to measure dynamic stress versus time history on the critical part from which a crack is initiated often. Rainflow cycle counting method was used to estimate fatigue damage at dangerous area under operating condition. Therefore, this study shows that analytical fatigue life at the end beam can be predicted on the basis of S-N curve and structure analysis and has a fairly good correlation with experimental fatigue life.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete

  • Murthy A, Ramachandra;Aravindan, M.;Ganesh, P.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.315-325
    • /
    • 2018
  • This paper predicts the flexural behaviour of reinforced concrete (RC) beams strengthened with a precast strip of ultra-high performance fiber-reinforced concrete (UHPFRC). In the first phase, ultimate load capacity of preloaded and strengthened RC beams by UHPFRC was predicted by using various analytical models available in the literature. RC beams were preloaded under static loading approximately to 70%, 80% and 90% of ultimate load of control beams. The models such as modified Kaar and sectional analysis predicted the ultimate load in close agreement to the corresponding experimental observations. In the second phase, the famous fatigue life models such as Papakonstantinou model and Ferrier model were employed to predict the number of cycles to failure and the corresponding deflection. The models were used to predict the life of the (i) strengthened RC beams after subjecting them to different pre-loadings (70%, 80% and 90% of ultimate load) under static loading and (ii) strengthened RC beams after subjecting them to different preloading cycles under fatigue loading. In both the cases precast UHPFRC strip of 10 mm thickness is attached on the tension face. It is found that both the models predicted the number of cycles to failure and the corresponding deflection very close to the experimental values. It can be concluded that the models are found to be robust and reliable for cement based strengthening systems also. Further, the Wang model which is based on Palmgren-Miner's rule is employed to predict the no. of cycles to failure and it is found that the predicted values are in very good agreement with the corresponding experimental observations.