• 제목/요약/키워드: Modified Dixon

검색결과 6건 처리시간 0.024초

Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy

  • Sang Hyup Lee;Hye Jin Yoo;Seung-Man Yu;Sung Hwan Hong;Ja-Young Choi;Hee Dong Chae
    • Korean Journal of Radiology
    • /
    • 제20권1호
    • /
    • pp.126-133
    • /
    • 2019
  • Objective: To compare the lumbar vertebral bone marrow fat-signal fractions obtained from six-echo modified Dixon sequence (6-echo m-Dixon) with those from single-voxel magnetic resonance spectroscopy (MRS) in patients with low back pain. Materials and Methods: Vertebral bone marrow fat-signal fractions were quantified by 6-echo m-Dixon (repetition time [TR] = 7.2 ms, echo time (TE) = 1.21 ms, echo spacing = 1.1 ms, total imaging time = 50 seconds) and single-voxel MRS measurements in 25 targets (23 normal bone marrows, two focal lesions) from 24 patients. The point-resolved spectroscopy sequence was used for localized single-voxel MRS (TR = 3000 ms, TE = 35 ms, total scan time = 1 minute 42 seconds). A 2 × 2 × 1.5 cm3 voxel was placed within the normal L2 or L3 vertebral body, or other lesions including a compression fracture or metastasis. The bone marrow fat spectrum was characterized on the basis of the magnitude of measurable fat peaks and a priori knowledge of the chemical structure of triglycerides. The imaging-based fat-signal fraction results were then compared to the MRS-based results. Results: There was a strong correlation between m-Dixon and MRS-based fat-signal fractions (slope = 0.86, R2 = 0.88, p < 0.001). In Bland-Altman analysis, 92.0% (23/25) of the data points were within the limits of agreement. Bland-Altman plots revealed a slight but systematic error in the m-Dixon based fat-signal fraction, which showed a prevailing overestimation of small fat-signal fractions (< 20%) and underestimation of high fat-signal fractions (> 20%). Conclusion: Given its excellent agreement with single-voxel-MRS, 6-echo m-Dixon can be used for visual and quantitative evaluation of vertebral bone marrow fat in daily practice.

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권2호
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.

애완 미니 돼지의 Malassezia furfur에 의한 외이도염 증례 (Otitis Externa caused by Malassezia furfur in a Miniature Pig)

  • 한재익;나기정
    • 한국임상수의학회지
    • /
    • 제26권3호
    • /
    • pp.303-305
    • /
    • 2009
  • A 7-month-old, female miniature pig was presented with excessive cerumen and pruritus. Greasy brown cerumen in both exteranal ear canal and sporadic head shaking were observed in the physical examination. Numerous budding yeasts in the cerumen were examined on microscopic examination. For species identification, PCR-RFLP using incubated colony on modified Dixon's medium was performed and finally, causative yeast was identified as M. furfur.

Parameters Affecting India Ink Artifacts on Opposed-Phase MR Images

  • Kim, Bo Ra;Ha, Dong-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권4호
    • /
    • pp.341-350
    • /
    • 2019
  • Purpose: To determine the MR parameters affecting India ink artifacts on opposed-phase chemical shift magnetic resonance (MR) imaging. Materials and Methods: The use of a female Sprague-Dawley rat was approved by our Institutional Animal Care and Use Committee. Using an iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) images, which is a modified Dixon method, axial opposed-phase images of the abdominal cavity were obtained with different MR parameters: series 1, different repetition times (TRs; 400, 2000, and 4000 ms); series 2, different echo times (TEs; 10, 50, and 100 ms); series 3, different field of views (FOVs; 6, 8, 16, and 24 cm); series 4, different echo train lengths (ETLs; 2, 4, and 8); series 5, different bandwidths (25, 50, and 85); and series 6, different slice thicknesses (1, 2, 4, 8, and 16 mm). Artifacts on opposed images obtained with different parameters were compared subjectively by two radiologists. For objective analysis, the thickness of the artifact was measured. Spearman's correlation between altered MR parameters and thicknesses of India ink artifact was obtained via objective analysis. Results: India ink artifact was increasingly apparent using shorter TE, larger FOV and ETL, and thicker slices upon subjective analysis. The objective analysis revealed a strong negative correlation between the thickness of the artifact and TE (r = -0.870, P < 0.01); however, strong positive correlations were found between FOV (r = 0.854, P < 0.01) and slice thickness (r = 0.971, P < 0.01). Conclusion: India ink artifact was thicker with shorter TE, larger FOV, and larger slice thickness.

Evaluation of Selective Saturation and Refocousing Pulses in Chemical Shift NMR Imaging

  • Shin, Yong-Jin;Park, Young-Sik
    • 한국자기공명학회논문지
    • /
    • 제4권1호
    • /
    • pp.64-73
    • /
    • 2000
  • There are several methods to achieve selective NMR image of differing chemical species with the three most popular methods of Dixon's, CHESS, and SECSI. A major problem common to all chemical shift imaging methods is the uniformity of the static magnetic field and distortions introduced when RF coils are loaded with a conducting specimen. Without magnetic field shimming, these methods cannot be used to acquire selectively image protons in fat and water which are separated by approximately 3.0ppm. Experiments with a phantom, with linewidths of 2.5 to 3.5ppm, were quantitatively evaluated for the three methods and a new chemical shift imaging method. In this study the new chemical shift imaging method (modified CHESS+SECSI technique) which included a selective saturation and refocusing pulse, was developed to determine the ratios of water and fat in different samples.

  • PDF

Use of Quantitative Vertebral Bone Marrow Fat Fraction to Assess Disease Activity and Chronicity in Patients with Ankylosing Spondylitis

  • Ga Young Ahn;Bon San Koo;Kyung Bin Joo;Tae-Hwan Kim;Seunghun Lee
    • Korean Journal of Radiology
    • /
    • 제22권10호
    • /
    • pp.1671-1679
    • /
    • 2021
  • Objective: We quantitatively measured the fat fraction (FF) in the vertebrae of patients with ankylosing spondylitis (AS) using magnetic resonance imaging (MRI) and investigated the role of FF as an indicator of both active inflammation and chronicity. Materials and Methods: A total of 52 patients with AS who underwent spinal MRI were retrospectively evaluated. The FF values of the anterosuperior and anteroinferior corners of the bone marrow in the L1-S1 spine were assessed using the modified Dixon technique. AS activity was measured using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), AS Disease Activity Score (ASDAS), and serum inflammatory marker levels. AS disease chronicity was assessed by AS disease duration and the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). Univariable and multivariable regression analyses were conducted to investigate the correlation between FF and other clinical characteristics. Results: The mean FF ± standard deviation of the total lumbar spine was 43.0% ± 11.3%. At univariable analysis, spinal FF showed significant negative correlation with BASDAI (β = -0.474, p = 0.002) and ASDAS with C-reactive protein (ASDAS-CRP; β = -0.478, p = 0.002) and a significant positive correlation with AS disease duration (β = 0.440, p = 0.001). After adjusting for patient age, sex, and total mSASSS score, spinal FF remained significantly negatively correlated with BASDAI (β = -0.543, p < 0.001), ASDAS-CRP (β = -0.568, p < 0.001), and ASDAS with erythrocyte sedimentation rate (β = -0.533, p = 0.001). Spinal FF was significantly lower in patients with very high disease activity (ASDAS-CRP > 3.5) than in those with only high disease activity (2.1 ≤ ASDAS-CRP ≤ 3.5) (p = 0.010). Conclusion: Spinal FF may help assess both AS disease activity and chronicity.