• 제목/요약/키워드: Moderate turbulent

검색결과 37건 처리시간 0.021초

대항분출 연소기의 난류화염 구조 (Flame Structure of Moderate Turbulent Combustion in Opposed Impinging Jet Combustor)

  • 조용진;윤영빈;이창진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.46-51
    • /
    • 2002
  • The measurement of velocity and stain rate field has been conducted in opposed impinging jet combustion. When a smaller diameter (5mm) orifice of pre-chamber was used, previous studies had reported that the combustion phase showed a shift from weak turbulent combustion to moderate turbulent combustion in the modified Borghi Diagram. In the case with smaller orifice diameter (5mm), NOx emission was substantially reduced by a factor 1/2 while the combustion pressure remains at the same as that in the conventional combustion. Hence, in this study, the experiment setup using PIV technique was designed to identify the relation of the strain rate distribution and NOx reduction associated with moderate turbulent combustion.

  • PDF

대향분출화염의 분산화학반응 화염구조와 NOx 저감기구 (Flame Structure of Moderately Turbulent Combustion in the Opposed Impinging Jet Combustor)

  • 손민호;조용진;윤영빈;이창진
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1387-1393
    • /
    • 2002
  • The measurement of velocity and stain rate field has been conducted in opposed impinging jet combustion. When a smaller diameter (5mm) orifice of pre-chamber was used, previous studies had reported that the combustion phase showed a shift from weak turbulent combustion to moderate turbulent combustion in the modified Borghi Diagram. In the case with smaller orifice diameter (5mm), NOx emission was substantially reduced by a factor 1/2 while the combustion pressure remains at the same as that in the conventional combustion. Hence, in this study, the experiment setup using PIV technique was designed to identify the relation of the strain rate distribution and NOx reduction associated with moderate turbulent combustion. As a result, it was found that the highly strained pockets are widely distributed during the combustion in the middle of chamber when the orifice diameter is 5mm. And the corresponding PDF distribution of strain rates she was the smoothly distributed strain .ate within the range of |$\pm$1000| (1/sec) rather than a spike shape about zero point. This is the unique feature observed in the combustion with 5mm orifice diameter. Therefore, it can be concluded that the substantial NOx reduction in opposed impinging combustor is mainly attributed to the strain rate distribution within the range of |$\pm$1000|resulting in the combustion phase shift to moderate turbulent combustion.

Prediction of the Turbulent Mixing in Bare Rod Bundles

  • Kim, Sin;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.104-115
    • /
    • 1999
  • The turbulent mixing rate is a very important variable in the thermal-hydraulic design of nuclear reactors. In this study, the turbulent mixing rate the fluid flows through rod bundles is estimated with the scale analysis on the flow pulsation phenomenon. Based upon the assumption that the turbulent mixing is composed of molecular motion, isotropic turbulent motion (turbulent motion without the flow pulsation), and How pulsation, the scale relation for the mixing is derived as a function of P/D, Re, and Pr. The derived scale relation is compared with published experimental results and shows good agreements. Since the scale relation is applicable to various Prandtl number fluid flows, it is expected to be useful for the thermal-hydraulic analysis of liquid metal coolant reactors as well as of moderate Prandtl number coolant reactors.

  • PDF

A Lagrangian Based Scalar PDF Method for Turbulent Combustion Models

  • Moon, Hee-Jang;Borghi, Roland
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1470-1478
    • /
    • 2004
  • In this paper, a new 'presumed' Probability Density Function (PDF) approach coupled with a Lagrangian tracking method is proposed for turbulent combustion modeling. The test and the investigation of the model are conducted by comparing the model results with DNS data for a premixed flame subjected in a decaying turbulent field. The newly constructed PDF, which incorporates the instantaneous chemical reaction term, demonstrates consistent improvement over conventional assumed PDF models. It has been found that the time evolution of the mean scalar, the variance and the mean reaction rate are strongly influenced by a parameter deduced by a Lagrangian equation which takes into account explicitly the local reaction rate. Tests have been performed for a moderate Damkohler number, and it is expected the model may cover a broader range of Damkohler number. The comparison with the DNS data demonstrates that the proposed model may be promising and affordable for implementation in a moment-equation solver.

직접수치모사를 이용한 난류경계층 내의 거대난류구조 연구 (A Direct Numerical Simulation Study on the very Large-Scale Motion in Turbulent Boundary Layer)

  • 이재화;성형진
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.977-982
    • /
    • 2009
  • Direct numerical simulation (DNS) of a turbulent boundary layer with moderate Reynolds number was performed to scrutinize streamwise-coherence of hairpin packet motions. The Reynolds number based on the momentum thickness (${\theta}_{in}$) and free-stream velocity (U${\infty}$) was varied in the range $Re_{\theta}$=1410${\sim}$2540 which was higher than the previous numerical simulations in the turbulent boundary layer. In order to include the groups of hairpin packets existing in the outer layer, large computational domain was used (more than 50${\delta}_o$, where ${\theta}_o$ is the boundary layer thickness at the inlet in the streamwise domain). Characteristics of packet motions were investigated by using instantaneous flow fields, two-point correlation and conditional average flow fields in xy-plane. The present results showed that a train of hairpin packet motions was propagating coherently along the downstream and these structures induced the very large-scale motions in the turbulent boundary layer.

Trans-Aortic Flow Turbulence and Aortic Valve Inflammation: A Pilot Study Using Blood Speckle Imaging and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography in Patients With Moderate Aortic Stenosis

  • Soyoon Park;Woo-Baek Chung;Joo Hyun O;Kwan Yong Lee;Mi-Hyang Jung;Hae-Ok Jung;Kiyuk Chang;Ho-Joong Youn
    • Journal of Cardiovascular Imaging
    • /
    • 제31권3호
    • /
    • pp.145-149
    • /
    • 2023
  • BACKGROUND: 18F-sodium fluoride positron emission tomography/computed tomography (18F-NaF PET/CT) has been proven to be useful in identification of microcalcifications, which are stimulated by inflammation. Blood speckle imaging (BSI) is a new imaging technology used for tracking the flow of blood cells using transesophageal echocardiography (TEE). We evaluated the relationship between turbulent flow identified by BSI and inflammatory activity of the aortic valve (AV) as indicated by the 18F-NaF uptake index in moderate aortic stenosis (AS) patients. METHODS: This study enrolled 18 moderate AS patients diagnosed within the past 6 months. BSI within the aortic root was acquired using long-axis view TEE. The duration of laminar flow and the turbulent flow area ratio were calculated by BSI to demonstrate the degree of turbulence. The maximum and mean standardized uptake values (SUVmax, SUVmean) and the total microcalcification burden (TMB) as measured by 18F-NaF PET/CT were used to demonstrate the degree of inflammatory activity in the AV region. RESULTS: The mean SUVmean, SUVmax, and TMB were 1.90 ± 0.79, 2.60 ± 0.98, and 4.20 ± 2.18 mL, respectively. The mean laminar flow period and the turbulent area ratio were 116.1 ± 61.5 msec and 0.48 ± 0.32. The correlation between SUVmax and turbulent flow area ratio showed the most positive and statistically significant correlation, with a Pearson's correlation coefficient (R2) of 0.658 and a p-value of 0.014. CONCLUSIONS: The high degree of trans-aortic turbulence measured by BSI was correlated with severe AV inflammation.

LBM을 이용한 사각형 실린더 주위의 난류유동해석 (Simulation of Turbulent Flow Over Square Cylinder Using Lattice Boltzmann Method)

  • 김형민
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.438-445
    • /
    • 2006
  • We performed the simulation of the unsteady three dimensional flow over a square cylinder in a wind tunnel in moderate Reynolds number range, $100{\sim}2500$ by using LBM. SGS model was applied for the turbulent flow. Frist of all we compared LBM(Lattice Boltzmann Method) solution of Poiseuille flow applied Farout and bounce back boundary conditions with the analytical and FOAM solutions to verify the applicability of the boundary conditions. For LBM simulation the calculation domain was formed by structured grids and prescribed uniform velocity and density inlet and Farout boundary conditions were imposed on the in-out boundaries. Bounceback and wind tunnel boundary conditions were applied to the cylinder walls and the boundaries of calculation domain respectively. The maximum Strouhal number of the vortex shedding is 0.2025 at Re = 750. and the number maintains the constant value of 0.18 when Re>1000. We also predicted that the critical reynolds number of the turbulent flow is in the range of $250{\sim}500$.

새로운 수동제어소자인 공동을 이용한 마찰력과 열전달 감소에 관한 연구 (Cavity as a New Passive Device for Reduction of Skin Friction and Heat Transfer)

  • 한성현;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.463-466
    • /
    • 2002
  • In order to examine the possibility of using a cavity as a passive device for reduction of skin friction and heat transfer, an intensive parametric study over a broad range of the cavity depth and length at different Reynolds numbers is performed for both laminar and turbulent boundary layers in the present study. Direct and large eddy simulation techniques are used for turbulent boundary layers at low and moderate Reynolds numbers, respectively. for both laminar and turbulent boundary layers over a cavity, a flow oscillation occurs due to the shear layer instability when the cavity depth and length are sufficiently large and it plays an important role in the determination of drag and heat-transfer increase or decrease. For a cavity sufficiently small to suppress the flow oscillation, both the total drag and heat transfer are reduced. Therefore, the applicability of a cavity as a passive device for reduction of drag and heat transfer is fully confirmed in the present study. Scaling based on the wall shear rate of the incoming boundary layer is also proposed and it is found to be valid in steady flow over a cavity.

  • PDF

차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구 (A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure)

  • 박경우;이주형;박희용
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.

PIV/OH PLIF 동시측정을 이용한 난류 대향 분출 예혼합화염 구조 연구 (Reseach on Structure of Turbulent Premixed Opposed Impinging Jet Flame with Simultaneous PIV/OH PLIF measurements)

  • 조용진;김지호;조태영;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.1-9
    • /
    • 2002
  • Simultaneous PIV and OH PLIF measurements are used for shear strain rates and flame locations, respectively. It is believed that the shear strain rates represent flow characteristics such as turbulence intensity and the OH intensity indicates the flame characteristics such as burning velocities. However, these are still lack of geometric information, which may be very important to flame quenching Hence, fractal dimensions 'Df) of the OH images are adopted as an additional information. Finally, the flame structure diagram proposed in this research has three parameters, which consist of strain rates, OH intensities and fractal dimensions. The results show that this diagram classifies turbulent premixed flames more effectively based on flame structures. The regime of weak turbulence is limited to narrow strain ranges and has the fractal dimension of about 2 In the regime of moderate turbulence, OH intensities increase as strain rates increase and the values of fractal dimensions are 1.8 Df 1.95. The regimes of thickened reaction and flame extinction (quenching) show bell-shaped and their values of fractal dimensions are 1.5 Df 1.7 and 0.9 Df 0.6, respectively.

  • PDF