• Title/Summary/Keyword: Models Management

Search Result 5,177, Processing Time 0.033 seconds

The Impact of Education-Orientation on Technology Innovation and Company Outcome : Focusing on Korean Companies in China (기업의 교육지향성이 기술혁신과 기업성과에 미치는 영향 : 대 중국 투자 한국기업을 중심으로)

  • Kim, Jung Hoon;Lim, Young Taek
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.231-249
    • /
    • 2014
  • We define $21^{st}$ century as an amalgamation of globalization and localization, or Glocalization. Additionally, due to the increasing supply of smart phones and wide usage of social networking services, the ability to utilize such global and regional information has increased a coperation's competitiveness in its market, and even the business models have evolved from the conventional "production and distribution" to E-commerce, through which either a direct or a non-direct transaction is possible. My hypothesis is that the ability to adapt to this trend is possible through transfer of learning, and consequently, this will have an impact on company's performance. Thus, this thesis analyzes the mid- to the long-term impact of such ability and environmental factors on the performance and technology innovation of Korean companies in China. Ultimately, this study intends to engender a basic foundation for a corporation's management strategy in China. Finally this research focuses on those Korean companies in China only and on the proof of influential factors' impact on technological innovation and technological innovation's impact on those corporations' future performances. Section I is an abstract and section II, the case examines the uniqueness and current status of Korean companies in China identifies the concept and the definition of influential factors such as education-orientation, technological innovation, and performance, and then scrutinizes each factors through a closer look at their past researches. Section III explains the thesis model, the survey's method and target, the thesis, variable factors, the content, and the method of analysis. In section IV, the thesis is proved based on the outcome of the survey. The result in Section V highlights the high comprehension of technological innovation: both education-orientation and technological innovation prove to have a positive (+) correlation with the performance. The vision on education orientation proves to have a positive (+) influence on technological innovation. The vision on education-orientation and technological innovation prove to have a positive (+) influence individually on company's performance.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

A Comparative Study of the Security Prevention Strategies on Arson: Focused on the Behavioral Characteristics between Serial Arsonists and Simple Arsonists (방화범죄의 경비예방 전략에 관한 비교연구 - 연쇄방화범과 단순방화범의 행위적 특성을 중심으로 -)

  • You, Wan-Seok;Hwang, Sung-Hyun
    • Korean Security Journal
    • /
    • no.29
    • /
    • pp.139-162
    • /
    • 2011
  • The purpose of this study is to compare with the general and behavioral characteristics between simple and serial arsonists using the data derived from Scientific Crime Analysis System, Criminal Filing Search System, and Crime Information Management System. The analysis and findings reported here are derived from data extracted from 160 arsonists arrested by police officer. The independent variables included such socio-economic characteristic as arsonists' gender, age, occupation, education level, and previous criminal records of arsonists, and finally the general characteristics of the scene of fire settings. The dependent variable is whether or not serial fire setter. To achieve the purpose, the analysis of frequencies and cross-tab were conducted. According to frequence and cross-tab analysis, there are great differences of the general and behavior characteristics between two groups. In the comparison of simple and serial arsonists, serial arsonists are more likely to have previous criminal records, low socio-economic status, unmarried and no cohabitants than simple arsonists. furthermore, serial arsonists are more likely to use garbage papers for fire setting in the scene of the crime, to have mental or psychological problems, and to get involved in fire setting for the psychological pleasure than simple arsonists do. The present research has some obvious limitations. First, the analysis is based only on arsonists arrested by police officers. These may be considerable differences in arsonists arrested by police officers and fire setters not arrested by them. Additional research is needed to assess the extent to which these findings would apply to fire setters not arrested by police officer in Korea. Secondly, the data in this study are cross-sectional and simple cross-tab analysis are used. Potential limitation of cross-sectional data concerns the inability to specify the changes in measures as arsonists behavioral characteristics. Therefore, further studies need to use longitudinal data and more complicate statistical techniques such as correlation analysis, multiple regression analysis, or LISREL models to specify the casual relationships between dependent and independent variables for fire settings. Even if this study has some limitations, it is meaningful in which it first investigated the comparison of simple and serial arsonists focusing on the general and behavioral characteristics between two groups in Korea.

  • PDF

A Study on Actual Usage of Information Systems: Focusing on System Quality of Mobile Service (정보시스템의 실제 이용에 대한 연구: 모바일 서비스 시스템 품질을 중심으로)

  • Cho, Woo-Chul;Kim, Kimin;Yang, Sung-Byung
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.611-635
    • /
    • 2014
  • Information systems (IS) have become ubiquitous and changed every aspect of how people live their lives. While some IS have been successfully adopted and widely used, others have failed to be adopted and crowded out in spite of remarkable progress in technologies. Both the technology acceptance model (TAM) and the IS Success Model (ISSM), among many others, have contributed to explain the reasons of success as well as failure in IS adoption and usage. While the TAM suggests that intention to use and perceived usefulness lead to actual IS usage, the ISSM indicates that information quality, system quality, and service quality affect IS usage and user satisfaction. Upon literature review, however, we found a significant void in theoretical development and its applications that employ either of the two models, and we raise research questions. First of all, in spite of the causal relationship between intention to use and actual usage, in most previous studies, only intention to use was employed as a dependent variable without overt explaining its relationship with actual usage. Moreover, even in a few studies that employed actual IS usage as a dependent variable, the degree of actual usage was measured based on users' perceptual responses to survey questionnaires. However, the measurement of actual usage based on survey responses might not be 'actual' usage in a strict sense that responders' perception may be distorted due to their selective perceptions or stereotypes. By the same token, the degree of system quality that IS users perceive might not be 'real' quality as well. This study seeks to fill this void by measuring the variables of actual usage and system quality using 'fact' data such as system logs and specifications of users' information and communications technology (ICT) devices. More specifically, we propose an integrated research model that bring together the TAM and the ISSM. The integrated model is composed of both the variables that are to be measured using fact as well as survey data. By employing the integrated model, we expect to reveal the difference between real and perceived degree of system quality, and to investigate the relationship between the perception-based measure of intention to use and the fact-based measure of actual usage. Furthermore, we also aim to add empirical findings on the general research question: what factors influence actual IS usage and how? In order to address the research question and to examine the research model, we selected a mobile campus application (MCA). We collected both fact data and survey data. For fact data, we retrieved them from the system logs such information as menu usage counts, user's device performance, display size, and operating system revision version number. At the same time, we conducted a survey among university students who use an MCA, and collected 180 valid responses. A partial least square (PLS) method was employed to validate our research model. Among nine hypotheses developed, we found five were supported while four were not. In detail, the relationships between (1) perceived system quality and perceived usefulness, (2) perceived system quality and perceived intention to use, (3) perceived usefulness and perceived intention to use, (4) quality of device platform and actual IS usage, and (5) perceived intention to use and actual IS usage were found to be significant. In comparison, the relationships between (1) quality of device platform and perceived system quality, (2) quality of device platform and perceived usefulness, (3) quality of device platform and perceived intention to use, and (4) perceived system quality and actual IS usage were not significant. The results of the study reveal notable differences from those of previous studies. First, although perceived intention to use shows a positive effect on actual IS usage, its explanatory power is very weak ($R^2$=0.064). Second, fact-based system quality (quality of user's device platform) shows a direct impact on actual IS usage without the mediating role of intention to use. Lastly, the relationships between perceived system quality (perception-based system quality) and other constructs show completely different results from those between quality of device platform (fact-based system quality) and other constructs. In the post-hoc analysis, IS users' past behavior was additionally included in the research model to further investigate the cause of such a low explanatory power of actual IS usage. The results show that past IS usage has a strong positive effect on current IS usage while intention to use does not have, implying that IS usage has already become a habitual behavior. This study provides the following several implications. First, we verify that fact-based data (i.e., system logs of real usage records) are more likely to reflect IS users' actual usage than perception-based data. In addition, by identifying the direct impact of quality of device platform on actual IS usage (without any mediating roles of attitude or intention), this study triggers further research on other potential factors that may directly influence actual IS usage. Furthermore, the results of the study provide practical strategic implications that organizations equipped with high-quality systems may directly expect high level of system usage.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

A Study on the Model Development and Empirical Application for Measuring and Verifying Value Chain Efficiency of Domestic Seaport Investment (국내항만투자의 가치사슬효율성 측정 및 검증을 위한 모형개발 및 실증적 적용에 관한 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.3
    • /
    • pp.139-164
    • /
    • 2009
  • The purpose of this paper is to investigate the value chain efficiency of Korean port investment by using the newly developed multi-year and multi-stage value chain efficiency model of DEA(Data Envelopment Analysis). Inputs[port investment amount, cargo handling capacity, and berthing capacity], and outputs[cargo handling amount, number of ship calls, revenue, and score of customer service satisfaction] are used during 14 years(1994-2007) for 20 Korean seaports by using two kinds of DEA models. Empirical main results are as follows: First, Model 1 shows that the ranking order of multi-stage value chain efficiency is Stage 2, Stage 3-1, Stage 1, and Stage 3-2. And according to the value chain average efficiency scores, ranking order is stages 2, 1, 3-1, and 3-2. In Model 2, 3(Incheon, Mogpo, and Jeju) out of 9 ports show the ranking order of Stages 2, 3-2, 3-1, and 1. And value chain average efficiency scores rank in order of Stages 2, 3-2, 3-1, and 1. Second, the difference among the value chain efficiency scores of each stage comes from the efficiency deterioration of all ports except Stages 2 and 1 in Model 1. In Model 2, value chain efficiency scores among the Stages 3-1, 3-2 compared to Stage 1 were deteriorated. The main policy implication based on the findings of this study is that the manager of port investment and management of Ministry of Land, Transport and Maritime Affairs in Korea should introduce the multi-year, multi-stage value chain efficiency method for deciding the port investment amount and evaluating the effect of port investment after considering the empirical results of this paper carefully.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Long-term forecasting reference evapotranspiration using statistically predicted temperature information (통계적 기온예측정보를 활용한 기준증발산량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1243-1254
    • /
    • 2021
  • For water resources operation or agricultural water management, it is important to accurately predict evapotranspiration for a long-term future over a seasonal or monthly basis. In this study, reference evapotranspiration forecast (up to 12 months in advance) was performed using statistically predicted monthly temperatures and temperature-based Hamon method for the Han River basin. First, the daily maximum and minimum temperature data for 15 meterological stations in the basin were derived by spatial-temporal downscaling the monthly temperature forecasts. The results of goodness-of-fit test for the downscaled temperature data at each site showed that the percent bias (PBIAS) ranged from 1.3 to 6.9%, the ratio of the root mean square error to the standard deviation of the observations (RSR) ranged from 0.22 to 0.27, the Nash-Sutcliffe efficiency (NSE) ranged from 0.93 to 0.95, and the Pearson correlation coefficient (r) ranged from 0.97 to 0.98 for the monthly average daily maximum temperature. And for the monthly average daily minimum temperature, PBIAS was 7.8 to 44.7%, RSR was 0.21 to 0.25, NSE was 0.94 to 0.96, and r was 0.98 to 0.99. The difference by site was not large, and the downscaled results were similar to the observations. In the results of comparing the forecasted reference evapotranspiration calculated using the downscaled data with the observed values for the entire region, PBIAS was 2.2 to 5.4%, RSR was 0.21 to 0.28, NSE was 0.92 to 0.96, and r was 0.96 to 0.98, indicating a very high fit. Due to the characteristics of the statistical models and uncertainty in the downscaling process, the predicted reference evapotranspiration may slightly deviate from the observed value in some periods when temperatures completely different from the past are observed. However, considering that it is a forecast result for the future period, it will be sufficiently useful as information for the evaluation or operation of water resources in the future.

Groundwater Recharge Evaluation on Yangok-ri Area of Hongseong Using a Distributed Hydrologic Model (VELAS) (분포형 수문모형(VELAS)을 이용한 홍성 양곡리 일대 지하수 함양량 평가)

  • Ha, Kyoochul;Park, Changhui;Kim, Sunghyun;Shin, Esther;Lee, Eunhee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, one of the distributed hydrologic models, VELAS, was used to analyze the variation of hydrologic elements based on water balance analysis to evaluate the groundwater recharge in more detail than the annual time scale for the past and future. The study area is located in Yanggok-ri, Seobu-myeon, Hongseong-gun, Chungnam-do, which is very vulnerable to drought. To implement the VELAS model, spatial characteristic data such as digital elevation model (DEM), vegetation, and slope were established, and GIS data were constructed through spatial interpolation on the daily air temperature, precipitation, average wind speed, and relative humidity of the Korea Meteorological Stations. The results of the analysis showed that annual precipitation was 799.1-1750.8 mm, average 1210.7 mm, groundwater recharge of 28.8-492.9 mm, and average 196.9 mm over the past 18 years from 2001 to 2018 in the study area. Annual groundwater recharge rate compared to annual precipitation was from 3.6 to 28.2% with a very large variation and average 14.9%. By the climate change RCP 8.5 scenario, the annual precipitation from 2019 to 2100 was 572.8-1996.5 mm (average 1078.4 mm) and groundwater recharge of 26.7-432.5 mm (average precipitation 16.2%). The annual groundwater recharge rates in the future were projected from 2.8% to 45.1%, 18.2% on average. The components that make up the water balance were well correlated with precipitation, especially in the annual data rather than the daily data. However, the amount of evapotranspiration seems to be more affected by other climatic factors such as temperature. Groundwater recharge in more detailed time scale rather than annual scale is expected to provide basic data that can be used for groundwater development and management if precipitation are severely varied by time, such as droughts or floods.