• Title/Summary/Keyword: Models, animal

Search Result 1,357, Processing Time 0.03 seconds

Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation

  • Abbasi, Ali A.;Vossoughi, G.R.;Ahmadian, M.T.
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Fl$\ddot{u}$ckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations.

B3(Fab)-streptavidin Tetramer Has Higher Binding Avidity than B3(scFv)-streptavidin Tetramer

  • Won, Jae-Seon;Kang, Hye-Won;Nam, Pil-Won;Choe, Mu-Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1101-1106
    • /
    • 2009
  • Multivalent and multi-specific antibodies can provide valuable tools for bio-medical research, diagnosis and therapy. In antigen-antibody interactions, the avidity of antibodies depends on the affinity and the number of binding sites.$^1$ As artificial multivalent antibody agents, single chain Fv-streptavidin fusion tetramer proteins $(scFv-SA)_4$ have been previously tested.$^{1,\;2}$ Although, the Fab domain is known to be more stable than scFv in animal models,$^{3,\;4}$ it has never been used to make a multivalent agent with a streptavidin fusion. In this study, we prepared tetra-valent $(Fab-cSA)_4$ by fusing Fab with core streptavidin (cSA). This molecule was made using inclusion body production, refolding and chromatography purification. Affinities of the Fab-cSA tetramer and a scFv-cSA tetramer to a cell surface antigen were compared by ELISA using biotin-HRP. The Fab-cSA tetramer showed higher binding avidity than the scFv-cSA tetramer. The higher binding avidity of the Fab-cSA tetramer demonstrates its potential as a therapeutic agent for target-specific antibody therapy.

Immunofluorescence Microscopic Evaluation of Tight Junctional Proteins during Enterotoxigenic Bacteroides fragilis (ETBF) Infection in Mice

  • Hwang, Soonjae;Kang, Yeowool;Jo, Minjeong;Kim, Sung Hoon;Cho, Won Gil;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.275-279
    • /
    • 2018
  • Inflammatory bowel disease (IBD) is increasing in prevalence in developed countries but the cause of this increase is unclear. In animal models of IBD and in human IBD patients, alterations in the tight junctional proteins have been observed, suggesting that the intestinal microflora may penetrate the underlying colonic tissue and promote inflammation. Enterotoxigenic Bacteroides fragilis (ETBF) causes inflammatory diarrhea in human and is implicated in inflammatory bowel diseases. However, it is unclear whether alterations in tight junctional proteins occur during ETBF infection in mice. In this brief communication, we report that ETBF infection induces up-regulation of claudin-2 and down-regulation of claudin-5 through B. fragilis toxin (BFT) activity in the large intestine of C57BL/6 mice. In contrast, BFT did not induce changes in tight junctional proteins in the HT29/C1 cell line, suggesting that analysis of biological activity of BFT in vivo is important for evaluating ETBF effects.

Translocator protein (TSPO): the new story of the old protein in neuroinflammation

  • Lee, Younghwan;Park, Youngjin;Nam, Hyeri;Lee, Ji-Won;Yu, Seong-Woon
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.20-27
    • /
    • 2020
  • Translocator protein (TSPO), also known as peripheral benzodiazepine receptor, is a transmembrane protein located on the outer mitochondria membrane (OMM) and mainly expressed in glial cells in the brain. Because of the close correlation of its expression level with neuropathology and therapeutic efficacies of several TSPO binding ligands under many neurological conditions, TSPO has been regarded as both biomarker and therapeutic target, and the biological functions of TSPO have been a major research focus. However, recent genetic studies with animal and cellular models revealed unexpected results contrary to the anticipated biological importance of TSPO and cast doubt on the action modes of the TSPO-binding drugs. In this review, we summarize recent controversial findings on the discrepancy between pharmacological and genetic studies of TSPO and suggest some future direction to understand this old and mysterious protein.

Cardiovascular Diseases and Panax ginseng: A Review on Molecular Mechanisms and Medical Applications

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.16-26
    • /
    • 2012
  • Ginseng is one of the most widely used herbal medicines and is reported to have a wide range of therapeutic and pharmacological applications. Ginseng may also be potentially valuable in treating cardiovascular diseases. Research concerning cardiovascular disease is focusing on purified individual ginsenoside constituents of ginseng to reveal specific mechanisms instead of using whole ginseng extracts. The most commonly studied ginsenosides are $Rb_1$, $Rg_1$, $Rg_3$, $Rh_1$, Re, and Rd. The molecular mechanisms and medical applications of ginsenosides in the treatment of cardiovascular disease have attracted much attention and been the subject of numerous publications. Here, we review the current literature on the myriad pharmacological functions and the potential benefits of ginseng in this area. In vitro investigations using cell cultures and in vivo animal models have indicated ginseng's potential cardiovascular benefits through diverse mechanisms that include antioxidation, modifying vasomotor function, reducing platelet adhesion, influencing ion channels, altering autonomic neurotransmitters release, and improving lipid profiles. Some 40 ginsenosides have been identified. Each may have different effects in pharmacology and mechanisms due to their different chemical structures. This review also summarizes results of relevant clinical trials regarding the cardiovascular effects of ginseng, particularly in the management of hypertension and improving cardiovascular function.

Ginsenosides-mediated Vascular Relaxation and Its Molecular Mechanisms (진세노사이드의 혈관확장작용과 분자기전)

  • Kim, Nak-Doo
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.89-98
    • /
    • 2008
  • There are increasing evidences in the literatures on the potential role of ginsenosides in treating cardiovascular diseases. In this article, current information about ginsenosides-mediated vascular relaxation are reviewed. From the published studies using isolated organs, cell culture systems and animal models, ginsenosides are shown to relax blood vessels and improve blood flow through diverse mechanisms, including nitric oxide release by activating eNOS phosphorylation via PI3K/Akt and/or ERK1/2 pathways in endothelial cells, induction of inducible nitric oxide synthase through activation of NF-${\kappa}$B, reducing the intracelluar Ca$^{2+}$ levels by activating Ca$^{2+}$-activated K$^{+}$ channels in vascular smooth muscle cells and reducing platelet aggregation by decreasing thromboxane A$_2$ formation and intracelluar Ca$^{2+}$in platelets. In addition, the relevant clinical trials regarding the effects of ginsenosides on the cardiovascular disease are summarized, particulary focusing on managing hypertension and improving thrombotic disorders. Finally, antagonistic effects of ginsenosides on the prostaglandin H$_2$ receptor and scavenging effects on the generation of oxygen-derived free radicals in spontaneously hypertensive rats (SHR) are discussed.

Anti-nociceptive, Anti-inflammatory, Mental Effects of Essential Oil from Thymus magnus (섬백리향 정유의 진통, 항염증, 정신적인 작용)

  • Kim, Sun-Min;Suk, Kui-Duk
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.508-516
    • /
    • 2007
  • Thymus magnus is an endemic (Ulleung Island) species in Korea. This plant is used as diaphoretics and carminatives in traditional medicine. In the literature, few scientific assays were realized on this species, such as antibiotic (Streptococcus pneumoniae, Staphylococcus aureus, Salmonella enteritidis, and S. typhimurium) and antifungal activities. In order to clarify whether essential oil of T. magnus have pharmacological effects, anti-inflammatory, sedative, anti-depressant, analgesic, and sleep-prolonged effects were investigated using animal models. From this study, the following conclusions were attained; 1) Essential oil of T. magnus did not show any acute toxicity on mice when orally administered at the dose of 2-3 g/kg body weight. 2) Essential oil of T. magnus possessed strong anti-inflammatory activity, similar to that of a positive control prednisolone. 3) Essential oil of T. magnus had excellent analgesic activity, comparable to that of aspirin. 4) The essential oil of T. magnus possessed strong sleep-prolonged effect on pentobarbital induced-sleep test in mice model. 5) In the hot plate test, the essential oil of T. magnus had moderate effect. 6) And the essential oil of T. magnus had no significant effects in forced-swimming test and open-field test.

Protective Effect of HP08-0106 on Ligature-induced Periodontitis in Rats

  • Choi, Hwa-Jung;Cho, Hyoung-Kwon;Soh, Yun-Jo
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.187-194
    • /
    • 2011
  • Periodontitis is an inflammatory disorder of the periodontium, characterized by destruction of the tooth supporting tissues including alveolar bone and mediated by various pro-inflammatory mediators. Here, we demonstrated that HP08-0106, composed of four crude drugs-Gardenia jasminoides Grandiflora, Angelica gigas Nakai, Rehmannia glutinosa, and Schizonepeta tenuifolia in a weight ratio of 2:2:1:2, perturbs inflammatory responses, osteoclast formation in LPS-induced RAW 264.7 cells and alveolar bone resorption in ligature-induced periodontitis. HP08-0106 decreased the protein level of iNOS and COX2 as well as the secreted level of IL-$1{\beta}$, indicating that HP08-0106 has antiinflammatory effects. HP08-0106 also inhibited the expression of genes associated with osteoclastogenesis including c-Fos, MMP-9 and TRAP. Moreover, HP08-0106 exhibited a protective effect from alveolar bone loss in ligature-induced periodontitis animal models. Our results strongly suggest that HP08-0106 represent an important therapeutic tool to treat inflammatory disorders associated with bone loss such as periodontitis.

Advantages of the outgrowth model for evaluating the implantation competence of blastocysts

  • Kim, Jihyun;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.2
    • /
    • pp.85-93
    • /
    • 2020
  • The implantation process is highly complex and difficult to mimic in vitro, and a reliable experimental model of implantation has yet to be established. Many researchers have used embryo transfer (ET) to assess implantation potential; however, ET with pseudopregnant mice requires expert surgical skills and numerous sacrificial animals. To overcome those economic and ethical problems, several researchers have tried to use outgrowth models to evaluate the implantation potential of embryos. Many previous studies, as well as our experiments, have found significant correlations between blastocyst outgrowth in vitro and implantation in utero by ET. This review proposes the blastocyst outgrowth model as a possible alternative to animal experimentation involving ET in utero. In particular, the outgrowth model might be a cost- and time-effective alternative method to ET for evaluating the effectiveness of culture conditions or treatments. An advanced outgrowth model and further culture of outgrowth embryos could provide a subtle research model of peri- and postimplantation development, excluding maternal effects, and thereby could facilitate progress in assisted reproductive technologies. Recently, we found that outgrowth embryos secreted extracellular vesicles containing specific microRNAs. The function of microRNAs from outgrowth embryos should be elucidated in further researches.

Ginseng alleviates microbial infections of the respiratory tract: a review

  • Iqbal, Hamid;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.194-204
    • /
    • 2020
  • The detrimental impact of air pollution as a result of frequent exposure to fine particles posed a global public health risk mainly to the pulmonary disorders in pediatric and geriatric population. Here, we reviewed the current literature regarding the role of ginseng and/or its components as antimicrobials, especially against pathogens that cause respiratory infections in animal and in vitro models. Some of the possible mechanisms for ginseng-mediated viral inhibition suggested are improvements in systemic and mucosa-specific antibody responses, serum hemagglutinin inhibition, lymphocyte proliferation, cell survival rate, and viral clearance in the lungs. In addition, ginseng reduces the expression levels of proinflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-8) and chemokines produced by airway epithelial cells and macrophages, thus preventing weight loss. In case of bacterial infections, ginseng acts by alleviating inflammatory cytokine production, increasing survival rates, and activating phagocytes and natural killer cells. In addition, ginseng inhibits biofilm formation and induces the dispersion and dissolution of mature biofilms. Most clinical trials revealed that ginseng, at various dosages, is a safe and effective method of seasonal prophylaxis, relieving the symptoms and reducing the risk and duration of colds and flu. Taken together, these findings support the efficacy of ginseng as a therapeutic and prophylactic agent for respiratory infections.