DOI QR코드

DOI QR Code

Immunofluorescence Microscopic Evaluation of Tight Junctional Proteins during Enterotoxigenic Bacteroides fragilis (ETBF) Infection in Mice

  • Hwang, Soonjae (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Kang, Yeowool (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Jo, Minjeong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Kim, Sung Hoon (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Cho, Won Gil (Department of Anatomy, Wonju College of Medicine, Yonsei University at Wonju) ;
  • Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju)
  • Received : 2018.08.17
  • Accepted : 2018.08.30
  • Published : 2018.09.30

Abstract

Inflammatory bowel disease (IBD) is increasing in prevalence in developed countries but the cause of this increase is unclear. In animal models of IBD and in human IBD patients, alterations in the tight junctional proteins have been observed, suggesting that the intestinal microflora may penetrate the underlying colonic tissue and promote inflammation. Enterotoxigenic Bacteroides fragilis (ETBF) causes inflammatory diarrhea in human and is implicated in inflammatory bowel diseases. However, it is unclear whether alterations in tight junctional proteins occur during ETBF infection in mice. In this brief communication, we report that ETBF infection induces up-regulation of claudin-2 and down-regulation of claudin-5 through B. fragilis toxin (BFT) activity in the large intestine of C57BL/6 mice. In contrast, BFT did not induce changes in tight junctional proteins in the HT29/C1 cell line, suggesting that analysis of biological activity of BFT in vivo is important for evaluating ETBF effects.

Keywords

References

  1. Burek M, Arias-Loza PA, Roewer N, Forster CY. Claudin-5 as a novel estrogen target in vascular endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010. 30: 298-304. https://doi.org/10.1161/ATVBAHA.109.197582
  2. Capaldo CT, Nusrat A. Cytokine regulation of tight junctions. Biochimica et Biophysica Acta. 2009. 1788: 864-871. https://doi.org/10.1016/j.bbamem.2008.08.027
  3. Chambers FG, Koshy SS, Saidi RF, Clark DP, Moore RD, Sears CL. Bacteroides fragilis toxin exhibits polar activity on monolayers of human intestinal epithelial cells (T84 cells) in vitro. Infection and Immunity. 1997. 65: 3561-3570.
  4. Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. Biochimica et Biophysica Acta. 2008. 1778: 588-600. https://doi.org/10.1016/j.bbamem.2007.08.017
  5. Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, Barry S. $Foxp3^{+}$ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. Journal of Clinical Immunology. 2010. 30: 80-89. https://doi.org/10.1007/s10875-009-9345-1
  6. Gwon SY, Jang IH, Rhee KJ. Enterotoxigenic Bacteroides fragilis associated diseases and detection. Korean Journal of Clinical Laboratory Science. 2015. 47: 161-167. https://doi.org/10.15324/kjcls.2015.47.4.161
  7. Hwang S, Gwon SY, Kim MS, Lee S, Rhee KJ. Bacteroides fragilis toxin induces IL-8 secretion in HT29/C1 cells through disruption of E-cadherin junctions. Immune Network. 2013. 13: 213-217. https://doi.org/10.4110/in.2013.13.5.213
  8. Hwang SJ, Kim SH, Rhee KJ. Gut microbiome and gastrointestinal diseases. Korean Journal of Clinical Laboratory Science. 2018. 50: 11-19. https://doi.org/10.15324/kjcls.2018.50.1.11
  9. Kim JS, Jang HS. The expression pattern of the tight junction protein occludin in the epidermal context when comparing various physical samples. Korean Journal of Clinical Laboratory Science. 2015. 47: 267-272. https://doi.org/10.15324/kjcls.2015.47.4.267
  10. Kim MS, Kim HS, Ji SE, Rim JH, Gwon SY, Kim WH, Rhee KJ, and Lee KY. Characterization of bft genes among enterotoxigenic Bacteroides fragilis isolates from extraintestinal specimens at a university hospital in Korea. Korean Journal of Clinical Laboratory Science. 2016. 48: 82-87. https://doi.org/10.15324/kjcls.2016.48.2.82
  11. Liu ZJ, Yadav PK, Su JL, Wang JS, Fei K. Potential role of Th17 cells in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology. 2009. 15: 5784-5788. https://doi.org/10.3748/wjg.15.5784
  12. Mankertz J, Hillenbrand B, Tavalali S, Huber O, Fromm M, Schulzke KD. Functional crosstalk between Wnt signaling and Cdx-related transcriptional activation in the regulation of the claudin-2 promoter activity. Biochemical and Biophysical Research Communications. 2004. 314: 1001-1007. https://doi.org/10.1016/j.bbrc.2003.12.185
  13. Neurath MF. Cytokines in inflammatory bowel disease. Nature Reviews Immunology. 2014. 14: 329-342. https://doi.org/10.1038/nri3661
  14. Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, Collins JE. Inflammatory processes have differential effects on claudins-2, -3 and -4 in colonic epithelial cells. Laboratory Investigation. 2005. 85: 1139-1162. https://doi.org/10.1038/labinvest.3700316
  15. Rabizadeh S, Rhee KJ, Wu S, Huso D, Gan CM, Golub JE, Wu X, Zhang M, Sears CL. Enterotoxigenic Bacteroides fragilis: a potential instigator of colitis. Inflammatory Bowel Diseases. 2007. 13: 1475-1483. https://doi.org/10.1002/ibd.20265
  16. Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut. 2003. 52: 988-997. https://doi.org/10.1136/gut.52.7.988
  17. Rhee KJ, Wu S, Wu X, Huso DL, Karim B, Franco AA, Rabizadeh S, Golub JE, Mathews LE, Shin J, Sartor RB, Golenbock D, Hamad AR, Gan CM, Housseau F, Sears CL. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infection and Immunity. 2009. 77: 1708-1718. https://doi.org/10.1128/IAI.00814-08
  18. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E. Endothelial adherens junctions control tight junctions by VE-cadherinmediated upregulation of claudin-5. Nature Cell Biology. 2008. 10: 923-934. https://doi.org/10.1038/ncb1752
  19. Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S, Tsukita S. Megaintestine in claudin-15-deficient mice. Gastroenterology. 2008. 134: 523-534. https://doi.org/10.1053/j.gastro.2007.11.040
  20. Tanaka H, Takechi M, Kiyonari H, Shioi G, Tamura A, Tsukita S. Intestinal deletion of claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut. 2015. 64: 1529-1538. https://doi.org/10.1136/gutjnl-2014-308419
  21. Van Itallie C, Rahner C, Anderson JM. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. Journal of Clinical Investigation. 2001. 107: 1319-1327. https://doi.org/10.1172/JCI12464
  22. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Laboratory Investigation. 2008. 88: 1110-1120. https://doi.org/10.1038/labinvest.2008.78
  23. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, Housseau F, Pardoll DM, Sears CL. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Medicine. 2009. 15: 1016-1022. https://doi.org/10.1038/nm.2015
  24. Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and g-secretase-dependent E-cadherin cleavage. Journal of Cell Science. 2007. 120: 1944-1952. https://doi.org/10.1242/jcs.03455
  25. Wu SG, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003. 124: 392-400. https://doi.org/10.1053/gast.2003.50047
  26. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut. 2007. 56: 61-72. https://doi.org/10.1136/gut.2006.094375
  27. Zhang YG, Wu S, Xia Y, Sun J. Salmonella infection upregulates the leaky protein claudin-2 in intestinal epithelial cells. PLOS ONE. 2013. 8: e58606. https://doi.org/10.1371/journal.pone.0058606