• Title/Summary/Keyword: Modelling Behavior

Search Result 417, Processing Time 0.026 seconds

Numerical and experimental verifications on damping identification with model updating and vibration monitoring data

  • Li, Jun;Hao, Hong;Fan, Gao;Ni, Pinghe;Wang, Xiangyu;Wu, Changzhi;Lee, Jae-Myung;Jung, Kwang-Hyo
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Identification of damping characteristics is of significant importance for dynamic response analysis and condition assessment of structural systems. Damping is associated with the behavior of the energy dissipation mechanism. Identification of damping ratios based on the sensitivity of dynamic responses and the model updating technique is investigated with numerical and experimental investigations. The effectiveness and performance of using the sensitivity-based model updating method and vibration monitoring data for damping ratios identification are investigated. Numerical studies on a three-dimensional truss bridge model are conducted to verify the effectiveness of the proposed approach. Measurement noise effect and the initial finite element modelling errors are considered. The results demonstrate that the damping ratio identification with the proposed approach is not sensitive to the noise effect but could be affected significantly by the modelling errors. Experimental studies on a steel planar frame structure are conducted. The robustness and performance of the proposed damping identification approach are investigated with real measured vibration data. The results demonstrate that the proposed approach has a decent and reliable performance to identify the damping ratios.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

Numerical modelling of the behavior of bare and masonry-infilled steel frames with different types of connections under static loads

  • Galal Elsamak;Ahmed H. Elmasry;Basem O. Rageh
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.103-119
    • /
    • 2024
  • In this paper, the non-linear behavior of masonry-infill and bare steel frames using different beam-column connections under monotonic static loading was investigated through a parametric study. Numerical models were carried out using one- and two-dimensional modelling to validate the experimental results. After validating the experimental results by using these models, a parametric study was carried out to model the behavior of these frames using flushed, extended, and welded connections. The results showed that using the welded or extended connection is more efficient than using the flushed type in masonry-infilled steel frames, since the lateral capacities, initial stiffness, and toughness have been increased by 155%, 601%, and 165%, respectively in the case of using welded connections compared with those used in bare frames. The FE investigation was broadened to study the influence of the variation of the uniaxial column loads on the lateral capacities of the bare/infill steel frames. As the results showed when increasing the amount of uniaxial loading on the columns, whether in tension or compression, causes the lateral load capacity of the columns to decrease by 26% for welded infilled steel frames. Finally, the influence of using different types of beam-to-column connections on the vertical capacities of the bare/infill steel frames under settlement effect was also studied. As a result, it was found that, the vertical load capacity of all types of frames and with using any type of connections is severely reduced, and this decrease may reach 62% for welded infilled frames. Furthermore, the flushed masonry-infilled steel frame has a higher resistance to the vertical loads than the flushed bare steel frame by 133%.

Laser Thomson Scattering Measurements and Modelling on the Electron Behavior in a Magnetic Neutral Loop Discharge Plasma

  • Sung, Youl-Moon;Kim, Hee-Je;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.107-112
    • /
    • 2001
  • Laser Thomson scattering measurements of electrom temperature and density in a neutral loop discharge (NLD) plasma were performed in order to reveal the electron behavior around the neutral loop (NL). The experimental results were examined by using a simulation model that included effects of a three dimensional electromagnetic field with spatial decay of the RF electric field, and the limitation of the spatial extent of the electron motion and collision effect. From the experiments and modeling of the electron behavior, it was found that NLD plasma posses the electron temeprature $T_{e}$ and density ne peaks around the NL is essential for the formation of plasma. Also, the optimum condition of plasma production could be simply estimated by the calculation of $U_{av}$ and $F_{0}$././.

  • PDF

Prediction of Settlement of Vertical Drainage-Reinforced Soft Clay Ground using Back-Analysis (역해석 기법에 근거한 수직배수재로 개량된 연약점토지반의 침하예측)

  • Park, Hyun-Il;Kim, Yun-Tae;Hwang, Dae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.417-424
    • /
    • 2005
  • Observed field behaviors are frequently different from the behaviors predicted in the design state due to several uncertainties involved in soil properties, numerical modelling, and error of measuring system even though a sophisticated numerical analysis technique is applied to solve the consolidation behavior of drainage-installed soft deposits. In this study, genetic algorithms are applied to back-analyze the soil properties using the observed behavior of soft clay deposit composed of multi layers that shows complex consolidation characteristics. Utilizing the program, one might be able to appropriately predict the subsequent consolidation behavior from the measured data in an early stage of consolidation of multi layered soft deposits. Example analyses for drainage-installed multi-layered soft deposits are performed to examine the applicability of proposed back-analysis method.

  • PDF

The Effects of Parenting Behavior and Peer Relationships on Adolescent Self-Concept Development (부모의 양육행동과 또래관계가 청소년 자아개념에 미치는 영향)

  • Lee, Sa-Rah;Oh, Yun-Jin
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.9
    • /
    • pp.113-123
    • /
    • 2008
  • The purpose of this study was to investigate how parenting and peer relationships influence the development of adolescent self-concept by using Structural Equation Modeling(SEM). The subjects were 198 first graders (94 male and 104 female) from four high schools within the Seoul area. Descriptive and comparative statistical analysis was conducted with SPSS (Version10.0), while AMOS (Version 4.0) was used to assess structural equation modelling of parenting, peer relationship and the self-concept. Results showed that, in terms of correlation, more positive parenting behaviors induced more positive self-concept. In addition, better peer relationships demonstrated more positive self-concept. Regression analysis showed that peer relationships explained the variance in adolescents' self-concept more effectively than parenting behavior. This was confirmed by the SEM.

The Behavior and Characterization Analysis of Elastomer Seal for High Speed Pneumatic Cylinder (고속 공기압 실린더의 거동 및 특성 해석 기술 연구)

  • Hur, Shin;Woo, Chang-Su;Kim, Dong-Soo;Kim, Young-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1215-1220
    • /
    • 2008
  • The aim of this paper is to perform a finite element analysis that will have the ability to predict the seal performance characteristics, such as deformation, contact load and friction and also is to provide a means of potential seal designs, which can reduce the time and cost of designing the performance of the seal. The material property tests of elastomer seal are performed to obtain the hyperelastic properties and The Mooney-Rivlin constants are determined from these test results. A 2D modelling of the seal cross section is performed to simulate the contact behavior between the seal on the piston and the cylinder bore under operation conditions. The deformation behavior, contact load and friction of an elastomer seal is analyzed by a finite element method which performs three analytic phases of interference fit, the variations of pneumatic pressure and piston movement under the operational conditions.

  • PDF

A study on the vibration of automobile spring suspension system (자동차 스프링 시스템의 진동에 관한 연구)

  • 박종용;김원석;지성철;이장무;염영하;김중희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1450-1461
    • /
    • 1988
  • The spring suspension systems of passenger cars greatly influence the riding quality and safety. To properly design the suspension system, correct dynamic modelling and computational method have to be secured in this study. A computer program package was developed to investigate the dynamic behavior of a car and the suspension system for the case when the impulse input is acted on the car. Also, ADAMS, a commercial dynamic simulation program was used to analyze the dynamic behavior of a car passing over bumps. The actual dynamic behavior of the car was measured with a precision gyrometer and an accelerometer under driving conditions. The computed results agreed well with those of experiments.

Horizontal Behavior of Artificial Upwelling Device (인공용승장치의 수평거동특성)

  • Hong, Nam-Seeg;Kang, Seok-Wook
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.240-244
    • /
    • 2002
  • Mathematical and numerical modelling is proposed to evaluate the horizontal behavior of a wave-driven upwelling device and then, the horizontal behavior and the structural ability are inspected for the regular and irregular waves in East sea. Analysis results indicate that the buoy moves with the water particle and the pipe behaves cantilever beam. Also, it is found that the strength of pipe is sufficient to resist the internal moment

  • PDF

Fluid viscous device modelling by fractional derivatives

  • Gusella, V.;Terenzi, G.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical properties, two devices were tested the former behaving as a pure damper (PD device), whereas the latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried out under imposed displacement control. Secondarily, in order to describe their cyclical behavior, a model composed by an elastic and a damping element connected in parallel was defined. The elastic force was assumed as a linear function of the displacement whereas the damping one was expressed by a fractional derivative of the displacement. By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping coefficient and elastic stiffness) were identified by experimental results. The estimated values allowed to outline the main parameter properties on which depend both the elastic as well as the damping behavior of the considered devices.