• Title/Summary/Keyword: Modelling Behavior

검색결과 420건 처리시간 0.036초

운전자 충돌에 의한 에너지 흡수식 스티어링 시스템의 동적 해석 (Dynamic Analysis of Energy Absorbing Steering System for Driver Impacts)

  • 허신;구정서;최진민
    • 연구논문집
    • /
    • 통권24호
    • /
    • pp.97-106
    • /
    • 1994
  • Steering system is typically one of the vehicle parts that may injure an unrestrained driver in a frontal collision. Therefore, the engineers of vehicle safety parts researched the allowable injury criteria such as HIC(head injury criterion). chest acceleration and knee impact force. From their research, they recognized that development of energy absorbing steering system was necessary to protect the driver. Energy absorbing parts of steering system consist of shear capsule, ball sleeve and shaft assembly. We performed the modelling and dynamic analysis of the energy absorbing steering column with the unrestrained driver model. The conclusions of this study are as follows. 1) The variation of column angle has an important effects on the dynamic responses of steering system and driver behavior. 2) The energy absorbing steering system satisfies the safety criterion of FMVSS 203, 208, but not the safety criterion of FMVSS 204.

  • PDF

광검출기용 다결정 실리콘 박막의 전도특성 분석을 통한 결정립계의 모형화 (Modelling of Grain Boundary in Polysilicon Film for Photodetector Through Current-Voltage Analysis)

  • 이재성
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.255-262
    • /
    • 2020
  • Grain boundaries play a major role in determining device performance, particularly of polysilicon-based photodetectors. Through the post-annealing of as-deposited polysilicon and then, the analysis of electric behavior for a metal-polysilicon-metal (MSM) photodetector, we were able to identify the influence of grain boundaries. A modified model of polysilicon grain boundaries in the MSM structure is presented, which uses a crystalline-interfacial layer-SiOx layer- interfacial layer-crystalline system that is similar to the Si-SiO2 system in MOS device. Hydrogen passivation was achieved through a hydrogen ion implantation process and was used to passivate the defects at both interfacial layers. The thin SiOx layer at the grain boundary can enhance the photosensitivity of an MSM photodetector by decreasing the dark current and increasing the light absorption.

저항점 용접에 있어서 Shunt영향에 대한 연구 (A study on the shunt effect in resistance spot welding)

  • 부광석;조형석
    • 한국정밀공학회지
    • /
    • 제3권2호
    • /
    • pp.39-54
    • /
    • 1986
  • One of the important factors in practical welding situations is shunt effect which deteriorates weld quality due to a shunt current which flows in the exis- ting spot. Previously, this effect has not been analytically investigated, since the mechanism of shunt effect shows very complicated phenomena in the thermal and electrical behavior. In this paper this effect is extensively studied through theoretical and experimental analysis. The theoretical results obtained from a numerical analysis of the modelling of shunt effect are compared with experimental ones. Both results show good agreement and represent well the mechanism of shunt effect.

  • PDF

Analyses of centrifuge modelling for artificially sensitive clay slopes

  • Park, Dong Soon
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.513-525
    • /
    • 2018
  • Slope stability of sensitive clayey soils is particularly important when subjected to strength loss and deformation. Except for progressive failure, for most sensitive and insensitive slopes, it is important to review the feasibility of conventional analysis methods based on peak strength since peak strength governs slope stability before yielding. In this study, as a part of efforts to understand the behavior of sensitive clay slopes, a total of 12 centrifuge tests were performed for artificially sensitive and insensitive clay slopes using San Francisco Bay Mud (PI = 50) and Yolo Loam (PI = 10). In terms of slope stability, the results were analyzed using the updated instability factor ($N_I$). $N_I$ using equivalent unit weight to cause a failure is in reasonable agreement shown in the Taylor's chart ($N_I$ ~ 5.5). In terms of dynamic deformation, it is shown that two-way sliding is a more accurate approach than conventional one-way sliding. Two-way sliding may relate to diffused shear surfaces. The outcome of this study is contributable to analyzing stability and deformation of steep sensitive clay slopes.

Estimation of structural dynamic characteristics of the Egyptian Obelisk of Theodosius

  • Saygili, Ozden
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.311-320
    • /
    • 2019
  • Obelisks are historical monuments. There are several obelisks dating from ancient Egyptian period, located around various parts of the world. The city of Istanbul is a home to the Obelisk of Theodosius at the Hippodrome. Due to the expectation of a large event in the near future, the evaluation of seismic response of the Obelisk gets importance. Therefore, in this study structural dynamic behavior of the Obelisk was investigated using discrete element approach. Nonlinear dynamic analyses were performed using real and synthetic time series. Real and synthetic ground motions analyzed from this study seems consistent with the earthquake hazard levels that would be expected at the site of the Obelisk in the occurrence of an event of moment magnitude above 7.0 near Istanbul. Results are evaluated in terms of variation of displacement, relative displacement of adjacent blocks, normal stress and shear stress in time.

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

Intelligent big data analysis and computational modelling for the stability response of the NEMS

  • Juncheng Fan;Qinyang Li;Sami Muhsen;H. Elhosiny Ali
    • Computers and Concrete
    • /
    • 제31권2호
    • /
    • pp.139-149
    • /
    • 2023
  • This article investigates the statically analysis regarding the thermal buckling behavior of a nonuniform small-scale nanobeam made of functionally graded material based on classic beam theories along with the nonlocal Eringen elasticity. The material distribution of functionally graded structures is composed of temperature-dependent ceramic and metal phases in axial and thickness directions, called two-dimensional functionally graded (2D-FG). The partial differential (PD) formulations and end conditions are extracted by using to the conservation energy method. The porosity voids are assumed in the nonuniform functionally graded (FG) structure. The thermal loads are in the axial direction of the beam. The extracted nonlocal PD equations are also solved by employing generalized differential quadrature method (GDQM). Last but not least, the information acquired is used to produce miniature sensors, providing a unique perspective on the growth of nanoelectromechanical systems (NEMS).

Structural stability evaluation of TBM tunnels using numerical analysis approach

  • Dohyun Kim
    • Geomechanics and Engineering
    • /
    • 제38권6호
    • /
    • pp.583-591
    • /
    • 2024
  • To properly simulate the excavation process and evaluate the structural stability of the tunnel, rigorous large deformation analysis method is necessary. This study applies two most widely used numerical approaches capable of modelling and considering the large deformations behavior during excavation process to analyze and evaluate the structural stability of circular tunnel based on tunnel boring machine (TBM) excavation. By comparing and combining the results from two numerical approaches, the deformation of the excavated ground will be analyzed. The stability of the circular tunnel from TBM tunneling was assessed based on the maximum deformation occurred during the excavation process. From the numerical computation it was concluded that although the range of the damage on the ground done during excavation was found to be larger under hard rock condition, maximum deformation within the circular tunnel structure was larger under weak ground conditions and deeper tunnel depths.

Nonlinear FE modelling and parametric study on flexural performance of ECC beams

  • Kh, Hind M.;Ozakca, Mustafa;Ekmekyapar, Talha
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.21-31
    • /
    • 2017
  • Engineered Cementitious Composite (ECC) is a special class of the new generation of high performance fiber reinforced cementitious composites (HPFRCC) featuring high ductility with relatively low fiber content. In this research, the mechanical performance of ECC beams will be investigated with respect to the effect of slag and aggregate size and amount, by employing nonlinear finite element method. The validity of the models was verified with the experimental results of the ECC beams under monotonic loading. Based on the numerical analysis method, nonlinear parametric study was then conducted to evaluate the influence of the ECC aggregate content (AC), ECC compressive strength ($f_{ECC}$), maximum aggregate size ($D_{max}$) and slag amount (${\phi}$) parameters on the flexural stress, deflection, load and strain of ECC beams. The simulation results indicated that when increase the slag and aggregate size and content no definite trend in flexural strength is observed and the ductility of ECC is negatively influenced by the increase of slag and aggregate size and content. Also, the ECC beams revealed enhancement in terms of flexural stress, strain, and midspan deflection when compared with the reference beam (microsilica MSC), where, the average improvement percentage of the specimens were 61.55%, 725%, and 879%, respectively. These results are quite similar to that of the experimental results, which provides that the finite element model is in accordance with the desirable flexural behaviour of the ECC beams. Furthermore, the proposed models can be used to predict the flexural behaviour of ECC beams with great accuracy.

축대칭 조건 및 경계면 요소를 이용한 Piled Raft 기초의 유한차분 모델링 연구 (Finite Difference Modeling of a Piled Raft Foundation with Axisymmetry Condition and Interface Element)

  • 유광호;김형렬;배상한
    • 대한토목학회논문집
    • /
    • 제35권4호
    • /
    • pp.853-861
    • /
    • 2015
  • 본 연구에서는 수치해석을 이용한 piled raft 기초의 복합적인 거동평가를 위해 축대칭 조건 및 경계면 요소를 적용한 유한차분해석 모델링 방법이 합리적인지 검증하였다. 이를 위해 실내모형실험 결과와 수치해석 결과를 비교 분석하여 piled raft 기초의 모델링 방법의 적합성을 평가하였다. 그리고 실제 현장조건을 고려한 기초 매개변수에 대한 민감도분석을 수행하여 raft의 하중분담율을 분석하였다. 연구 결과, 실내모형실험과 수치해석 결과에서 지지력-수직변위의 상관관계가 동일한 경향을 보였으며, piled raft 기초의 극한지지력과 raft의 하중분담율이 비교적 유사하게 산정되었다. 그리고 민감도분석을 통해 raft의 하중분담율은 약 33%~52% 사이에서 산정되어, 기존 연구 결과와 유사함을 확인하였다. 따라서 piled raft 기초는 축대칭 조건 및 경계면 요소를 이용하여 효과적으로 모델링될 수 있을 것으로 판단된다.