• 제목/요약/키워드: Modeling of the Cutting Process

검색결과 106건 처리시간 0.026초

디지털 설계교육을 위한 디지털 건축모형제작 기술 적용에 대한 연구 (A Study on the Application of the Digital Architecture Model Fabrication for Digital Design Education)

  • 하승범;이강복
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권1호
    • /
    • pp.25-33
    • /
    • 2012
  • Ever since the local interior and architecture design industry adopted Digital fabrication modeling tool for its design operation in early 1990's, working environment has been changing. The Purpose of study is to analyze the digital Architecture fabrication modeling for digital design education in academy course. Digital Design Tools, Digital Space and Form, Digital Materiality and Digital Production. The Digital fabrication modeling is and important role in a traditional design process and digital design process. It is comprised of digital input devices(3D digitizer, 3D design tools) and digital output devices(cutting plotters, laser cut, CNC machines, 3D printers). Digital input devices can be shift a traditional design process to digital design process. Digital output devices are the principle of digital fabrication by CAD/CAM. Also, the result of this study provide the fundamental data for physical resources and digital design curriculum in KAAB.

선삭 가공시의 미스트 발생 특성 (Mist Formation Characteristics in Turning)

  • 오명석;고태조;박성호;김희술;정종운
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.147-152
    • /
    • 2002
  • The mechanism of the aerosol(mist) generation generally consists of spin-off, splash, and evaporation/condensation. Host researchers showed some theoretical model for predicting the particulate size and generation rate without real cutting in turning operation. These models were based on the spin-off mechanism, and verified good for modeling the process. However, in real machining, the cutting tool destroys the flow direction of the cutting fluid and generate the heat by the relative motion of between tool and workpicee, and so the mass loading of the mist is greatly increased as compared with non-cutting. In this paper, we show some experimental data that the mist formation characteristics of cutting is different from that of non-cutting.

  • PDF

신경회로망을 이용한 엔드밀 가공의 비절삭력계수 모델링 (Specific Cutting Force Coefficients Modeling of End Milling by Using Neural Network)

  • 이신영;이장무
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.979-987
    • /
    • 1999
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on, and cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling process for various cutting conditions, a mathematical model is important and this model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging farces of cutting tests. In this paper, the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in teaming stage as the omitted numbers of experimental data increases the average errors increase.

밀링머신의 절삭력 제어를 통한 표면굴곡도 향상에 관한 연구 (A Study on the Improvement of Surface Waviness by Cutting Force Control)

  • 오준호;정충영
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.206-214
    • /
    • 1988
  • 본 논문에서는 엔드 밀링에서 황삭 작업시 비교적 절삭 모델의 정립이 용이한 하향 밀링(down milling)의 경우를 대상으로, 가공면 오차의 주 원인인 공구와 공작물 사이의 처짐과 절삭력의 특정한 동적관계를 유도하고, 그 절삭력을 일정하게 유지하도록 공구의 이송속도를 온라인으로 제어하였다.

3차원 설계를 적용한 크루저급 세일링보트의 제작 공정 (A production process of cruiser sailing boat based on the three dimensional hull design)

  • 박근용;김동준;박종헌
    • 수산해양기술연구
    • /
    • 제44권4호
    • /
    • pp.353-361
    • /
    • 2008
  • Recently a modern style sailing boat suitable for Korean sea was designed through full three dimensional design skill by the authors. In this paper, based on this three dimensional hull and deck design, a production process of 31ft class cruiser sailing boat was developed. First of all, it was possible to make the digital mock-up for design boat. Through this mock-up and RP(rapid prototyping) modeling, an appropriate general arrangement of design boat was able to be determined at final. And also the female deck mould was able to be made by a 5-axis NC cutting machine. By doing this method, more higher efficiency and precision for sailing boat production could be achieved than before. Through this research the total process of design and construction for the designed boat was established.

밀링가공 시 절삭력 예측을 위한 시뮬레이션 연구 (A Study on the Simulation for Prediction of Cutting Force in Milling Process)

  • 백승엽;공정식;정성택;김성현;진다솜
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.353-359
    • /
    • 2017
  • 금형 산업과 다양한 산업에서 사용되고 있는 CNC공작기계는 최근 첨단 제품이나 신제품 설계에서 공정의 증가로 생산 품질과 작업자의 안전성 측면이 중요해지고 있으며, 생산제품의 품질을 균일하게 하고 재현성을 향상시키기 위한 최적 절삭 조건 선정 연구가 진행되어 왔다. 본 연구에서는 공구의 기하학적 모델링을 진행하고 생산 제품의 재현성 향상을 위한 조건 선정 선행 연구와 기존의 공구 인서트를 바탕으로 Solidworks 설계 프로그램을 이용하여 공구 인서트를 모델링하였다. 모델링 데이터를 바탕으로 AdvantEdge를 사용하여 절삭 공정에서 절삭력, 공구 응력, 그리고 온도의 변화에 대한 해석을 진행하였다.

Cutting simulation을 이용한 End-milling cutter의 모델링 및 제작에 관한 연구 (End-mill Modeling and Manufacturing Methodology via Cutting simulation)

  • 김재현;박수정;김종한;박정환;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.456-463
    • /
    • 2005
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data fur fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data fer machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used fur virtual cutting test and analysis as well.

  • PDF

선삭에서 절삭유 미립화 생성 메카니즘 (Aerosol Generation Mechanism for Cutting Fluid in Turning)

  • 박성호;고태조;김희술
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.179-184
    • /
    • 2001
  • The mechanism of the aerosol generation consists of spin-off, splash, and evaporation/condensation. Most researchers showed some theoretical model for predicting the particulate size and generation rate without cutting in turning operation. These models were based on the spin-off mechanism and verified good for modeling the process. However, in real machining, the cutting tool destructs the spin-off process, and the majority of the mist is due to splash. In this paper, we show some experimental evidence the aerosol generation mechanism should be explained with splash model as well as spin-off.

  • PDF

선삭에서 절삭유 미립화 생성 메카니즘의 실험적 검증 (Experimental Verification of Aerosol Generation Mechanism for Cutting Fluid in Turning)

  • 고태조;오명석;박성호;김희술
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.93-99
    • /
    • 2002
  • The mechanism of the aerosol generation generally consists of spin-off, splash, and evaporation/condensation. Most researchers showed some theoretical model for predicting the particulate size and generation rate without real cutting in turning operation. These models were based on the spin-off mechanism, and verified good for modeling the process. However, in real machining, the cutting tool destroys the spin-off process, and the majority of the mist is due to splash. In this paper, we show some experimental evidence that the aerosol generation mechanism in real machining should be explained with splash model as well as spin-off.