• Title/Summary/Keyword: Modeling and control

Search Result 4,372, Processing Time 0.037 seconds

Obstacle Parameter Modeling for Model Predictive Control of the Unmanned Vehicle (무인자동차의 모델 예측제어를 위한 장애물 파라미터 모델링 기법)

  • Yeu, Jung-Yun;Kim, Woo-Hyun;Im, Jun-Hyuck;Lee, Dal-Ho;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1132-1138
    • /
    • 2012
  • The MPC (Model Predictive Control) is one of the techniques that can be used to control an unmanned vehicle. It predicts the future vehicle trajectory using the dynamic characteristic of the vehicle and generate the control value to track the reference path. If some obstacles are detected on the reference paths, the MPC can generate control value to avoid the obstacles imposing the inequality constraints on the MPC cost function. In this paper, we propose an obstacle modeling algorithm for MPC with inequality constraints for obstacle avoidance and a method to set selective constraint on the MPC for stable obstacle avoidance. Simulations with the field test data show successful obstacle avoidance and way point tracking performance.

Development of Free-Form Surface Modeling System Using the Reverse engineering Technology (역설계를 이용한 자유곡면 모델링 시스템 개발)

  • 명태식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.111-122
    • /
    • 2000
  • It is difficult to make shape library for featrue-based modeling because free-form surface is various shaped complicated To make modeling using similar shape feature-based model is easy and fast. Recently RE(Reverse Engineering) technolo-gy is very convenient method to get free-form surface. This study develops surface editor which makes surface modeling to manipulate control points and this study We study on the effective model data management using database system.

  • PDF

Active Linear Modeling of Cochlear Biomechanics Using Hspice

  • Jarng Soon Suck;Kwon You Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.77-86
    • /
    • 2005
  • This paper shows one and two dimensional active linear modeling of cochlear biomechanics using Hspice. The advantage of the Hspice modeling is that the cochlear biomechanics may be implemented into an analog Ie chip. This paper explains in detail how to transform the physical cochlear biomechanics to the electrical circuit model and how to represent the circuit in Hspice code. There are some circuit design rules to make the Hspice code to be executed properly.

An integrated control and modeling of multi-body space structures (다중 구조체의 형태를 가지는 우주비행체의 제어설계)

  • 김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.401-406
    • /
    • 1991
  • An integrated control design and modeling method of multibody space structures is presented as a tool to control an d describe the large rotational motions of the space structures. The structures representeed with three separated substructures have independent control systems but linked with joints interacting the dynamic motions of the substructures. The effect of the structural flexibility to the control performance was analyzed and the simulation results showed that effectiveness of the designed control logic in controlling the motions of the multi-body space structures.

  • PDF

A Design on Multivariable Controller for Industrial Robot Manipulators (산업용 로봇 매니퓰레이터의 다변수 제어기 설계)

  • 한상완;홍석교
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.636-643
    • /
    • 1998
  • This paper is presents multivariable control scheme for industrial robot manipulators. The control scheme consists of two loops. The modeling error between linearized robot model and actual robot model is compensated in error compensation loop. The PID control loop is designed for pole assignment to stability of robot system and utilized for trajectory tracking. Alternatively computer simulation results are given for illustration purpose of suggested controller.

  • PDF

Real Time Modeling of Discrete Event Systems and Its Application (이산사건 시스템의 실시간 모델링 및 응용)

  • Jeong, Yong-Man;Hwang, Hyung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.91-98
    • /
    • 1998
  • A DEDS is a system whose stated change in response to the occurrence of events from a predefined event set. A major difficulty in developing analytical results for the system is the lack of appropriate modeling techniques. In this paper, we consider the modeling and control problem for Discrete Event Dynamic Systems(DEDS) in the Temporal Logic framework(TLF) which have been recently defined. The traditional TLF is enhanced with time functions for real time control of Discrete Event Dynamic Systems. A sequence of event which drive the system from a given initial state to a given final state is generated by pertinently operating the given plants. This paper proposes the use of Real-time Temporal Logic as a modeling tool for the analysis and control of DEDS. An given example of fixed-time traffic control problem is shown to illustrate our results with Real-time Temporal Logic Framework.

  • PDF

Efficient Procedural Modeling of Trees Based on Interactive Growth Volume Control

  • Kim, Jinmo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2232-2245
    • /
    • 2013
  • The present study proposes efficient procedural modeling methods for enabling the growth and creation of various trees with minimal user control. Growth volume algorithms are utilized in order to easily and effectively calculate many parameters that determine tree growth, including branch propagation. Procedural methods are designed so that users' interactive control structures can be applied to these algorithms to create unique tree models efficiently. First, through a two-line-based interactive growth volume control method, the growth information that determines the overall shape of the tree is intuitively adjusted. Thereafter, independent branch control methods designed to control individual branches are added to the growth deformation in order to enable the growth of unique trees. Whether the growth processes of desired trees can be easily and intuitively controlled by the proposed method is verified through experiments. Methods that can apply the proposed methods are also verified.

Modern vistas of process control

  • Georgakis, Christos
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.18-18
    • /
    • 1996
  • This paper reviews some of the most prominent and promising areas of chemical process control both in relations to batch and continuous processes. These areas include the modeling, optimization, control and monitoring of chemical processes and entire plants. Most of these areas explicitly utilize a model of the process. For this purpose the types of models used are examined in some detail. These types of models are categorized in knowledge-driven and datadriven classes. In the areas of modeling and optimization, attention is paid to batch reactors using the Tendency Modeling approach. These Tendency models consist of data- and knowledge-driven components and are often called Gray or Hybrid models. In the case of continuous processes, emphasis is placed in the closed-loop identification of a state space model and their use in Model Predictive Control nonlinear processes, such as the Fluidized Catalytic Cracking process. The effective monitoring of multivariate process is examined through the use of statistical charts obtained by the use of Principal Component Analysis (PMC). Static and dynamic charts account for the cross and auto-correlation of the substantial number of variables measured on-line. Centralized and de-centralized chart also aim in isolating the source of process disturbances so that they can be eliminated. Even though significant progress has been made during the last decade, the challenges for the next ten years are substantial. Present progress is strongly influenced by the economical benefits industry is deriving from the use of these advanced techniques. Future progress will be further catalyzed from the harmonious collaboration of University and Industrial researchers.

  • PDF

Control system modeling of stock management for civil infrastructure

  • Abe, Masato
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.609-625
    • /
    • 2015
  • Management of infrastructure stock is essential in sustainability of society, and its analysis and optimization are studied in the light of control system modeling in this paper. At the first part of the paper, cost of stock management is analyzed based on macroscopic statistics on infrastructure stock and economical growth. Stock management burden relative to economy is observed to become larger at low economic growth periods in developed economies. Then, control system modeling of stock management is introduced and by augmenting maintenance actions as control input, dynamic behavior of stock is simulated and compared with existing time history statistics. Assuming steady state conditions, applicability of the model to cross sectional data is also demonstrated. The proposed model is enhanced so that both preventive and corrective maintenance can be included as system inputs, i.e., feedforward and feedback control inputs. Optimal management strategy to achieve specified deteriorated stock level with minimal cost, expressed in terms of preventive and corrective maintenance actions, is derived based on estimated parameter values for corrosion of steel bridges. Relative cost effectiveness of preventive maintenance is shown when target deteriorated stock level is lower.

A Study on the Modeling and Control of High-Speed/High-Accuracy Position Control System (고속/정밀 위치제어시스템의 모델인 및 제어에 관한 연구)

  • Park, Min-Gyu;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.399-406
    • /
    • 2001
  • This paper presents a dynamic modeling and a sliding mode controller for the high-speed/high-accuracy position control system. The selected target system is the wire bonder assembly which is used in the semiconductor assembly process. This system is a reciprocating one around the pivot point that consists of VCM(voice coil motor) as an actuator and transducer horn as a bonding tool. For the modeling elements, the sys-tem is divided into electrical circuit, magnetic circuit and mechanical system. Each system is modeled using the bond graph method and united into the full system. Two major aims are considered in the design of the controller. The first one is that the horn must track the given reference trajectory. The second one is that the controller must be realizable by using the DSP board. Computer simulation and experimental results show that the designed sliding mode controller provides better performance than the PID controller.

  • PDF