• Title/Summary/Keyword: Modeling and control

Search Result 4,372, Processing Time 0.035 seconds

Empirical Closed Loop Modeling of a Suspension System Using Neural Network (신경회로망을 응용한 현가장치의 폐회로 시스템 규명)

  • Kim, I.Y.;Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.29-38
    • /
    • 1997
  • A closed-loop system modeling of an active/semiactive suspension system has been accomplished through an artificial neural network. A 7DOF full model as a system's equation of motion has been derived and an output feedback linear quadratic regulator has been designed for control purpose. A training set of a sample data has been obtained through a computer simulation. A 7DOF full model with LQR controller simulated under several road conditions such as sinusoidal bumps and rectangular bumps. A general multilayer perceptron neural network is used for dynamic modeling and target outputs are fedback to the a layer. A backpropagation method is used as a training algorithm. Model validation of new dataset have been shown through computer simulations.

  • PDF

Development of Fuzzy control and Modeling of IPMC Actuator for the Endoscopic Microcapsule (캡슐형 내시경 로봇의 IPMC 액추에이터 모델링 및 퍼지 제어 알고리듬 개발에 대한 연구)

  • 오신종;김훈모;최혁렬;전재욱;남재도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2003
  • The Ionic Polymer Metal Composite (IPMC) is one of the electroactive polymer (EAP) have potential application as micro actuators. In this study, IPMC is used as actuator to control of the direction for the endscopic microcapsule. Because it bends in water and wet conditions by applying a low voltage (1∼3 V) to its surfaces. The basic characteristics and the static modeling of IPMC are discussed. Also the dynamic modeling is performed using the Lagrange' equation. Computer simulation results show that the performed modeling guarantee similarity of actual system.

Nonlinear Chemical Plant Modeling using Support Vector Machines: pH Neutralization Process is Targeted (SVM을 이용한 비선형 화학공정 모델링: pH 중화공정에의 적용 예)

  • Kim, Dong-Won;Yoo, Ah-Rim;Yang, Dae-Ryook;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1178-1183
    • /
    • 2006
  • This paper is concerned with the modeling and identification of pH neutralization process as nonlinear chemical system. The pH control has been applied to various chemical processes such as wastewater treatment, chemical, and biochemical industries. But the control of the pH is very difficult due to its highly nonlinear nature which is the titration curve with the steepest slope at the neutralization point. We apply SVM which have become an increasingly popular tool for machine teaming tasks such as classification, regression or detection to model pH process which has strong nonlinearities. Linear and radial basis function kernels are employed and each result has been compared. So SVH based on kernel method have been found to work well. Simulations have shown that the SVM based on the kernel substitution including linear and radial basis function kernel provides a promising alternative to model strong nonlinearities of the pH neutralization but also to control the system.

A Hybrid Modeling Tool for Human Error Control of in Collaborative Workflow (협업 워크플로우에서의 인적오류 제어를 위한 하이브리드 모델링 도구)

  • 이상영;유철중;장옥배
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.2
    • /
    • pp.156-173
    • /
    • 2004
  • Business process should support the execution of collaboration process with agility and flexibility through the integration of enterprise inner or outer applications and human resources from the collaborative workflow view. Although the dependency of enterprise activities to the automated system has been increasing, human role is as important as ever. In the workflow modelling this human role is emphasized and the structure to control human error by analysing decision-making itself is needed. Also, through the collaboration of activities agile and effective communication should be constructed, eventually by the combination and coordination of activities to the aimed process the product quality should be improved. This paper classifies human errors can be occurred in collaborative workflow by applying GEMS(Generic Error Modelling System) to control them, and suggests human error control method through hybrid based modelling as well. On this base collaborative workflow modeling tool is designed and implemented. Using this modelling methodology it is possible to workflow modeling could be supported considering human characteristics has a tendency of human error to be controlled.

A Study on the Application of Real-Time Object-Oriented Modeling Technique For Real-Time Computer Control

  • Kim Jong-Sun;Yoo Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.546-551
    • /
    • 2001
  • This paper considers the design technique of the real-time control algorithm to implement the electronic interlocking system which is the most important station control system in railway signal field. The proposed technique consists of the structure design and the detail design which are based on the ROOM(Real-Time Object-Oriented Modeling) This proposed technique is applied to the typical station model in order to prove the validity as verifying the performance of the modeled station.

  • PDF

Development of CMG-Based Attitude Control M&S Software (제어모멘텀휠 기반 자세제어 M&S 소프트웨어 개발)

  • Mok, Sung-Hoon;Kim, Taeho;Bang, Hyochoong;Song, Taeseong;Lee, Jongkuck;Song, Deokki;Seo, Joongbo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.289-299
    • /
    • 2019
  • Attitude control modeling and simulation (M&S) can be extensively applied in overall development process, from simple algorithm design to on-board software verification. This paper introduces CMG-based attitude control M&S software, which consists of 6-DOF modeling (CMG and space environments modeling), and attitude control algorithm. The M&S software is divided into three modules, from an inner CMG motor control module to an outer earth observation mission module. While an application of this developed software is currently limited to the initial-phase attitude controller development, its application area can be extended to the later-phases by considering sophisticated model information in future.

Stabilization Converter Design and Modeling of LEO Satellite Power Systems (저궤도 위성의 전력 시스템 안정화를 위한 모델링 및 제어)

  • Yun, Seok-Teak;Won, Young-Jin;Lee, Jin-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellite is very important to survival operation and hard to test, increasing reliability is very critical. Due to LEO small satellites are very sensitive to power system, effective stabilization control is important. Therefore, this paper introduce methods for general modeling of power converting system which it can be used design of controller and analysis of external disturbance influences. In conclusion, a modeling of LEO small satellites power converting system and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite are generated.

A Study on the Robust Motion Control Technology of Articulated Robot Arm (다관절 로봇 아암의 강인한 모션 제어방법에 관한 연구)

  • Ha, Eon-Tae;Kim, Hyun-Geon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2015
  • In this paper, we propose a new motion control technology to design robust control system of industrial robot. The system modeling of robotic manipulation tasks with constraints is presented, and the control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference of robot manipulator is generated by the reference controller as a discrete state system and the control behavior of constrained system which has poor modeling information and time-invariant constraint function is improved motion control system is successfully evaluated by experiment to the desired tasks.

Design of a repetitive controller for the system with unstructured uncertainty (비구조적인 불확실성을 가지는 시스템에 대한 반복 제어기의 설계)

  • 도태용;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.779-782
    • /
    • 1996
  • Repetitive control is a proposed control strategy in view of the internal model principle and achieves a high accuracy asymptotic tracking property by implementing a model that generates the periodic signals of period into the closed-loop system. Since the repetitive control system contains a periodic signal generator with positive feedback loop, which reduces the stability margin, in the overall closed-loop system, the stability of the closed-loop system should be considered as an important problem. In case that a real system has plant uncertainties which are not represented through modeling, the robust stability problem of the repetitive control system has not been considered sufficiently. In this paper, we propose the robust stability condition for the system with modeling uncertainty. The proposed robust stability condition will be obtained using the robust performance condition in the H$_{\infty}$ control. Moreover, by use of the proposed robust stability condition, we propose a procedure that designs a repetitive controller and a feedback controller simultaneously which can stabilize the overall closed-loop system robustly and which can also do the closedloop system without repetitive controller..

  • PDF

Modeling and Motion Control of Piezoelectric Actuator for the Inchworm : Part 2. Motion Control of Inchworm Using Sliding Mode Method (이송자벌레를 위한 압전소자의 모델링 및 운동제어 : 2. 슬라이딩 모드법에 의한 이송자벌레의 운동제어)

  • Kim, Young-Shik;Park, Euncheol;Kim, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.878-884
    • /
    • 2005
  • This paper presents an algorithm for the precision motion control based on the dynamic characteristics of piezoelectric actuators in the inchworm. The dynamic characteristics are identified by the frequency domain modeling technique using the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The Sliding mode controller and the Kalman filter are designed for motion control of the inch-worm.