• Title/Summary/Keyword: Modeling and control

Search Result 4,372, Processing Time 0.033 seconds

LPD(Linear Parameter Dependent) System Modeling and Control of Mobile Soccer Robot

  • Kang, Jin-Shik;Rhim, Chul-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • In this paper, a new model for mobile soccer robot, a type of linear system, is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and plant be well conditioned and the outer loop is a well-known PI controller designed for tracking the reference input, is suggested. Because the plant, the soccer robot, is parameter dependent, it requires the controller to be insensitive to the parameter variation. To achieve this objective, the pole-sensitivity as a pole-variation with respect to the parameter variation is defined and design algorithms for state-feedback controllers are suggested, consisting of two matrices one of which is for general pole-placement and other for parameter insensitive. This paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ cost. By using these properties, we suggest a tuning procedure for the PI controller. We that the control algorithm in this paper, based on the linear system theory, is well work by simulation, and the LPD system modeling and control are more easy treatment for soccer robot.

MODELING OF A REPULSIVE TYPE MAGNETIC BEARING FOR FIVE AXIS CONTROL INCLUDING EDDY CURRENT EFFECT

  • Ohji, T.;Mukhopadhyay, S.C.;Iwahara, M.;Yamada, S.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.625-629
    • /
    • 1998
  • So far a single-axis controlled repulsive type magnetic bearing system have been designed and fabricated in our laboratory employing the repulsive forces operating between the stator and rotor permanent magnet for levitation. The radial axis is uncontrolled passive one. The higher speed of operation is limited due to the vibration along the uncontrolled axis and the increase of control current due to eddy current interference. This paper will discuss a detailed modeling of the repulsive type magnetic bearing system for five axis control including the eddy current effect and the method of reduction of eddy current effect. Simulation results using Matlab will be presented.

  • PDF

A Study on the Control of an IPMC Actuator Using an Adaptive Fuzzy Algorithm

  • Oh, Sin-Jong;Kim, Hunmo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • The ionic Polymer Metal Composite (IPMC) is one of the electroactive polymers (EAP) that was shown to have potential application as an actuator It bends by applying a low voltage current (1∼3 V) to its surfaces when containing water In this paper, the basic characteristics and the static & dynamic modeling of IPMC is discussed. In modeling and analysis, the equations of motion, which describe the total dynamics of the system, are driven. To control the position of the IPMC actuator, an adaptive fuzzy algorithm is used. IPMC is a time varying system because the some parameters vary with the passage of time. In this paper, the modeling and control of IPMC is introduced.

A Study on the PID Control Gain Selection Scheme of a High-Speed/High-Accuracy position Control System using Taguchi Method (다구찌 방법을 이용한 고속/정밀 위치제어시스템의 PID 제어게인 선정에 관한 연구)

  • 신호준;채호철;한창수
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For modeling elements, the system is divided into electrical part, magnetic part, and mechanical part. Each part is modeled using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to obtain the more robust PID gain combinations than conventional one. This study makes use of an L18 array with three parameters varied on three levels. Results of simulations and experimental show that the designed PID controller provides a improved ratio of signal to noise and a reduced sensitivity improved to the conventional PID controller.

  • PDF

PSCAD/EMTDC Based Modeling of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 모델링)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.204-207
    • /
    • 2004
  • The paper proposes a simulation model of grid-connected photovoltaic generation system (PV system) using on PSCAD/EMTDC, a reliable power system and apparatus transient analysis program. A equivalent circuit model of a solar cell is used for modeling solar array. A series of parameters required for array modeling are deduced from general specification data of a solar module. A PWM voltage source inverter (VSI) model is presented and current control scheme is implemented for VSI control. A maximum power point tracking (MPPT) technique is applied for controlling the PV system. Simulation case study provides V-I and V-P characteristics of solar array and PV system control performance for irradiation changes.

  • PDF

A Study on the Robust Control Gain Selection Scheme of a High-Speed/High-Accuracy Position Control System (고속/정밀 위치 제어 시스템의 강인한 제어게인 선정에 관한 연구)

  • Shin, Ho-Joon;Yun, Seok-Chan;Jang, Jin-Hee;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.747-753
    • /
    • 2001
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For the modeling elements, the system is divided into electrical system, magnetic system, and mechanical system. Each system is modeled by using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to evaluate the more robust PID gain combinations. This study makes use of an L18 array with three parameters varied on three levels. Computer simulations and experimental results show that the designed PID controller provides more improved signal to noise ratio and reduced sensitivity than the conventional PID controller.

  • PDF

STRIDE-based threat modeling and DREAD evaluation for the distributed control system in the oil refinery

  • Kyoung Ho Kim;Kyounggon Kim;Huy Kang Kim
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.991-1003
    • /
    • 2022
  • Industrial control systems (ICSs) used to be operated in closed networks, that is, separated physically from the Internet and corporate networks, and independent protocols were used for each manufacturer. Thus, their operation was relatively safe from cyberattacks. However, with advances in recent technologies, such as big data and internet of things, companies have been trying to use data generated from the ICS environment to improve production yield and minimize process downtime. Thus, ICSs are being connected to the internet or corporate networks. These changes have increased the frequency of attacks on ICSs. Despite this increased cybersecurity risk, research on ICS security remains insufficient. In this paper, we analyze threats in detail using STRIDE threat analysis modeling and DREAD evaluation for distributed control systems, a type of ICSs, based on our work experience as cybersecurity specialists at a refinery. Furthermore, we verify the validity of threats identified using STRIDE through case studies of major ICS cybersecurity incidents: Stuxnet, BlackEnergy 3, and Triton. Finally, we present countermeasures and strategies to improve risk assessment of identified threats.

Modeling of Switched Reluctance Motor (SRM) Drive and Control System using Rotor Position Information Sensor (회전자 위치정보 센서를 이용한 Switched Reluctance Motor (SRM)의 구동 및 제어 시스템 Modeling)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In recent years, permanent magnets such as IPM (Interior Permanent Magnet) motors or SPM (Surface Permanent Magnet) motors that can obtain high efficiency and power density by inserting rare earth permanent magnets into the rotor are used. Research on the used electric motor is being actively conducted. Since it uses a permanent magnet, it has the advantage of high efficiency and high power density compared to reluctance motors and induction motors, but by inserting a permanent magnet into the rotor, it operates at high speeds and decreases reliability due to demagnetization of the permanent magnets, and increases the cost of rare earth metals. In this paper, in accordance with the development of future technology that can replace rare-earth permanent magnet motors and technological preoccupation of rare-earth reduction type motors and de-rare-earth motors, switched reluctance motors that do not require permanent magnets (Switched Reluvtance Motors) Motor, SRM) to drive driving control. Using the 3-phase SRM library provided by the PSIM simulation program, we will study the driving and control system modeling of SRM using the rotor position information sensor.

Structural Equation Modeling of Perceived Social Support, Self-Control, and Subjective Well-Being of Children (아동이 지각하는 사회적 지지, 자기조절력, 주관적 안녕의 인과적 구조분석)

  • Jung, Hae young;Lee, Kyeong hwa
    • Korean Journal of Child Studies
    • /
    • v.29 no.4
    • /
    • pp.167-179
    • /
    • 2008
  • This study used Structural Equation Modeling(SEM) to test causal relationships among perceived social supports, self-control, and subjective well-being in a sample of 325 5th and 6th grade elementary school children. Correlations of observed variables showed statistically significant among perceived social support, self-control, and subjective well-being. The goodness-of-fit of the hypothetical structural model in the study, perceived social support having direct effects on self-control and subjective well-being, and self-control, retaining the influence of perceived social support, having effects on subjective well-being-showed fairly acceptable levels. The results revealed that perceived social supports increase children's subjective well-being, and these supports also increase children's self-control, which indirectly influences children's subjective well-being.

  • PDF

Speed Control of Induction Motor Systems by Design Method of Digital Servo System (디지탈 서보계 설계법에 의한 유도 전동기 시스템의 속도 제어)

  • 김상봉;김환성;이동철;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.50-59
    • /
    • 1992
  • The paper presents a digital speed control approach of induction motor systems by using a digital servo control method and a well-known second order differential equation as model. The basic concept of using the modeling equation stated in the above is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc, just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. Futhermore, the proposed speed control system can be treated as a single input and single output system. The effectiveness of the servo control system obtained by the above-mentioned design concept is illustrated by the experimental results in the presence of both step reference changes and load variations. It is observed from the experimental results that the steady state-error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal changes and load variations.

  • PDF