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LPD(Linear Parameter Dependent) System Modeling and Control

of Mobile Soccer Robot

Jin-Shik Kang and Chul Woo Rhim*

Abstract: : In this paper, a new model for mobile soccer robot, a type of linear system, is pre-
sented. A controller, consisting of two loops the one of which is the inner state feedback loop
designed for stability and plant be well conditioned and the outer loop is a well-known PI con-
troller designed for tracking the reference input, is suggested. Because the plant, the soccer robot,
is parameter dependent, it requires the controller to be insensitive to the parameter variation. To
achieve this objective, the pole-sensitivity as a pole-variation with respect to the parameter
variation is defined and design algorithms for state-feedback controllers are suggested, consist-
ing of two matrices one of which is for general pole-placement and other for parameter insensi-
tive. This paper shows that the PI controller is equivalent to the state feedback and the cost func-
tion for reference tracking is equivalent to the LQ cost. By using these properties, we suggest a
tuning procedure for the PI controller. We that the control algorithm in this paper, based on the
linear system theory, is well work by simulation, and the LPD system modeling and control are
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more easy treatment for soccer robot.
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1. INTRODUCTION

The wheeled mobile robot, especially, the robotic
soccer systems and its control schemes have been
studied by many researchers with various degrees of
application and success [1-6]. Most of these studies
are concentrated on the development, control and
planning the strategy of mobile robot. But, because of
the wheeled mobile robot is modeled and controlled
by a nonlinear system framework, its treatment is
very complicated and conservative.

In this paper, a new model for mobile soccer robot,
a type of linear system, is presented. A controller,
consisting of two loops, is suggested. The one of
which is the inner state feedback loop designed for
stability. And the outer loop is a PI controller de-
signed for tracking the reference input. Because the
plant is parameter dependent, it requires the controller
to be insensitive to the parameter variation. To
achieve this objective, the pole-sensitivity is defined
as a pole-variation with respect to the parameter
variation and design algorithms for state-feedback
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controllers are suggested. The state-feedback gain is
consisting of two matrices one of which is designed
for general pole-placement and other is designed for
parameter insensitive. This paper shows that the PI
controller is equivalent to the state feedback and the
cost function for reference tracking is equivalent to
the LQ cost. By using these properties, we suggest a
tuning procedure for the PI controller. The control
algorithm and the LPD system modeling of soccer
robot, presented in this paper, is more easy then pre-
vious works, and which can be applicable to other
two wheeled mobile robots.

2. LPD SYSTEM MODELING OF SOCCER
ROBOT

2.1. LPD system

Many of the physical systems can be modeled by a
linear parameter dependent system. Before introduc-
ing the LPD system, we need to define the set of all
admissible parameter trajectories.

Definition 1[7]: Given a compact set P < R®, the
parameter set F, denotes the set of all piccewise
continuous functions mapping R* into P with finite
number of discontinuities in any interval.

By definition 1, the parameter values p; e F), are
differentiable with respect to time.

A state space realization of LPD system is

x(t) = A(p)x(t) + B u(t)

1
y(1) = Cx(t) M
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n n
where, p e Fp,x(t)e R u®)e R Wand y()eR Y.

Now, we state the concept of quadratic stability for LPD
systems.

Definition 2: The system, described by the (1) is
quadratically stable over all admissible parameters if

a positive definite and symmetric matrix
Pe R™" exists, such that for all pe Fp
T
A" (p)P+ PA(p)<O. 2

Since the matrix A(p) is a continuous function of
parameters pe F,, it is clear that the condition (2)

implies that the left hand side of the equation is nega-
tive definite. In the sense of Lyapunov stability theory,

the stability condition is clear and strong because the

matrix Pe R™is real and constant, which is not a

function of parameters pe F,.

After the notion of quadratic stability, we will now
introduce the quadratic stabililizability and controlla-
bility.

Definition 3: The pair of the matrix function
[A(p(t)) B] is quadratically stabilizable if there exists

nxn

a symmetric positive definite matrix Pre R, not

parameter function

F(pye (RS, R

dependent, and a

M Xn) such that

[A(p) + BT Pp. + PplA(p) + BF(p)I <0 (3)

for all admissible parameters.
Definition 4: The pair of the matrix function
[A(p()) B] is controllable if

rank(B A(p) B A (p) A3(p)B--- A" ~1(p)Bl=n.(4)

Definition 3 and definition 4 are equivalent nota-
tions of the stabilizability and controllability of a
well-known linear system. In the Definition 3, the

term F(p)e CO(R®, R™*™) represents a parameter-

dependent state feedback gain which is continuously

A

y
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Fig. 1. The structure of soccer robot.

differentiable with respect to parameter value p and
time, and has the same dimensions as the general
state feedback gain matrix does.

2.2. LPD system modeling of soccer robot

The structure of the mobile soccer robot, consid-
ered in this paper, is shown in Fig. 1. The relation
between the forward velocity and the wheel angular
velocity is described by

r r .

vi 12 2 |4
= . 5
M o !92} ©

2b 2b

where, vand ¢ are forward and rotation velocities
of the soccer robot, respectively, and ris the radius
of the wheel. And bis the displacement from cen-
ter robot to center of wheel. The kinetic equation is

x cosg O
y|=|sing © H (6)
¢ o 1|t?
In order to derive the dynamic equations, we now
define some variables.
1. : robot inertia except wheels and rotor
1,,,: motor rotor inertia for wheels and wheel axis
I, motor rotor inertia for wheels and wheel di-

ameter
m : mass of robot except wheels and motor rotor

m,. : mass of wheels and motor rotor

The dynamic equation of a soccer of robot is de-
scribed by

M(@i+Vig d=E@r-Al (@1

where, Ais Lagrangy multiplier, zis the torque of
each wheels, and 4 is the displacement from the
center of mass to the center of rotation,

q:[x y 91 QZJT and

0 e 1 oDt~ = ud | Soccer W)

O -
i Controller d Robot WH= 60D

Stete feedback

Fig. 2. Controller structure for the soccer robot.
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In order to eliminate the Lagrange multiplier, we se-
lect the null space of A(q) as

cbcosg cbcosg
cbsing chsing
1 0
0 |

S(q) = ®)

then, the (7) becomes

ST (@M (g)S(@)0+5(0)0)+ST @V (g.9)=7 (9)

The (9) is a type of nonholonomic equation. This type
of system cannot be linearized by using the state
feedback.

We now present a LPD system model for the mo-
bile soccer robot. (9) becomes

{ﬁ}:r"’ll M12} %
] My My |6
. )
N N é 2m _cbd¢
J{ 11 12}['1}_ c .
Nt N2 ) 0] |2m cbag?

(10)

where,

_ 22 42
Mll_MZZ_mC b +Ic +IW

_ 2.2 2

_ _ 2y 4
Ny =Njp=m.c bdg

_ _ 2004

In the (10), the variable ¢ must be selected as a

parameter. Because of the term qﬁz, the dynamic
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equation is not linear with respect to the parameter
value ¢. To avoid this problem, let us define a new
input variable 7 as

. ;2
|:T1:lé Tl—2mccbd¢ a1
) Ty — 2mccba'¢f2
then, the dynamic equation becomes
P}{Mu MIZ} gl +{Nll le}{ﬂ(m
L] My My |6 [N N2li%

and after simple algebraic manipulation, we can ob-
tain the LPD system representation of mobile soccer
robot system. Define the state variables, input and the
output as

A A A A A A
X E0,x) S0y, %3=26,x4 =6,

7 4
U=\, , y = .
r2 92

then, the state space representation of mobile soccer
robot is

x(t) = Ayx(1) + A ($(6)x(2) + Bu(r)

(13)
y(t) =Cx(t)
where,
0 001 1 O 0 001 O 0
0 0 001 1 0 0 001 O
= , A =
% 0 0 o of 17]0 0 M Y2
0 o0 0 0 0O 0 a4y 4y
0 0
PO I S L
b b T 0001
by by
Qmc2b2 + 1) m c2bdd)
ap(=app)= 5
4mcb”Ic +2101W
~@mc?b? 41, ))m b )
ay(=ay)= o) Ev
dmc*b”Ic +2]cIW
2,2 ;2
mc=b +17 +1
b Ebyp)=——F 55"
4mc b Ic +2ICIW
b (= b ) Icz—mczb2
122177555
dmc=b” Ic +2ICIW

The (13) show that controllability matrices [4, B]

and [4,B] are controllable.
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3. CONTROL OF MOBILE SOCCER
ROBOT

We are state a controller structure and a new con-
trol design algorithm presented in this paper for mo-
bile soccer robot.

3.1. Control structure

The controller presented in this paper consists of
two loops. One of which is the inner state feedback
loop and the outer loop is PI (proportional-integral)
control loop. The inner state-feedback loop is de-
signed for minimize the parameter sensitivity of the
plant and for make the plant well conditioned. And
the outer Pl-loop is designed to satisfy the perform-
ance requirements, i.e., tracking error, overshoot, etc.
The controller schematic is shown in Fig. 2.

3.2. Pole-placement [7]

We are now state the pole placement design via the
state feedback. Because the given system dynamic
equation is parameter dependent, the constant feed-
back gain matrix cannot make the system poles lie in
the desired location. To hold the system poles in de-
sired location, the state feedback gain matrix must be
parameter dependent. We select the select feedback
control input as

u(t) = —[Fy + F ($0)]x(0)+v (14)

The matrix F; is used for the pole-placement, by
which the closed loop poles are located at the desired
location. And Fj(4(r)) is a auxiliary state feedback
gain which makes the system is not depended on the
parameter variation or attenuate the parameter de-
pendence of the system.
The input matrix B, the rank of which is m, is
partitioned as
VA
B=[U, UZ]{O} (15)

where, U;, U, are unit matrices and Z is a non-

singular matrix with rank m. Let Ap, Vp be de-

sired closed loop poles and right eigenvector matrix,
respectively. Then, the following equation is a neces-
sary and sufficient condition for the existence of the
state feedback gain matrix, which places the closed
loop poles at the desired location.

vl (4gvp ~VpAp)=0 (16)

If the (16) holds, then the state feedback gain matrix
F is

_1,,T -1
Fy=Z"'Uj (4y-VpApVp) (17)

The derivation of equations (16) and (17) can be
found in many books and papers which treat the linear
system control.

Now, we define the pole-sensitivity which can be
used in robust pole placement.

Definition 5: The pole sensitivity, defined as a ra-
tio of pole displacement with respect to the parameter
variation, is described by

u )
o ' oop; !
S === / (18)
P i Vi

where, u;,v; is the left and right eigen-vectors of the
i-th system pole, respectively.

By definition 5, s;; means the i-th pole displacement

with j-th parameter variation. By using the state feed-
back input described by the (14), the pole sensitivity
for state feedback loop is

ol4 51 ()

u.
o4, ! op ; !

Sj=at= / (19)
% U vy

To make the pole-sensitivity equal to zero or mini-
mized, one of the following equations must hold

I - (UIZ)(Z_IUlT) =0 (20.a)
L
A, - BF, =Vp, (20.b)
where VDL is ortho-normal complement of Vp, i.e.,
VpVi =0 or ViVp =0,

Generally, an (20) does not hold because the second
term of (20.a) has rank m<n, and the matrix 7, is n
dimensional identity matrix. Rewrite the (19) as

11 12
AR L
A e 1Y WA
S, = J J
y u.v.

11

@21

By proper selection of the left and right eigenvectors,
the pole sensitivity can be minimized. It becomes
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1,411 1.1, 1,12 2.2
Sij_ui(Aj _UIZFj)vi+ui(Aj —UlZFj )vl-

2211, 2212
+uiAj vi+uiAj v

22)

Note that the (22) gives us an idea for the selection of
the auxiliary state feedback gain matrix which mini-
mizes the pole-sensitivity. The auxiliary state feed-
back gain matrix is

(=11 01 —1,,—1 12
Fl(p)—[Z UpA; 27U 4 } (23)

By selecting the auxiliary feedback gain matrix de-
scribed by the (23), the pole sensitivity is minimized
and is

2211, 2,212
Sij_—ui Aj v; +u; Aj v 24)

The (24) gives us some information. The minimiza-
tion of pole sensitivity is related to the selection of

eigen-vectors and auxiliary state feedback gain matrix.

And for some systems, exact cancellation of parame-
ter dependence is possible by proper selection of the
auxiliary feedback gain matrix and eigenvectors.

3.3. Design of the PI control

For the mobile soccer robot, the reference input
signal varies rapidly. The design requirements are:
small tracking errors, fast response, and small over-
shoot, etc.. These requirements are easily satisfied by
using the PI controller. The general description of the
PI controller is

w(t)=Kpe(t)+K; [e(t)dt (25)

, based on the definition of the state variables, and
after simple algebraic manipulation and some modifi-
cation, the (25) becomes

0,(t) 6
W) =[&; KP]{HZ(O}—[K] KP]L,’m. (26)

Note that the (26) is another type of state feedback.
The closed loop dynamic equation is described by

(t) =[AO -BFy-B|K; Kpﬂx(t) )
+B[KI Kp]xd(z)+d(t)

where,
d(t)= (4, - BA NB(2))x(t) + other noise terms.  (28)

The PI controller must be designed to guarantee ro-
bust performance. For the well tracking result, let us
consider the following cost function

minJ = [[e] ()0e(t) +v (ORv(E)dr (29

by using the definition of state, error and input and
after simple algebraic manipulation, (29) becomes

minJ =[x Qux + x5 0xy — 22T Qpx Yt (30)
where,
_ T T
0 =C" OC+[K; Kp] R[K; Kp]. 31
The cost function described by the (30) is equivalent
to the general LQ cost, and the minimum cost is ob-

tained by using the relationship

min

cT KC” > minJ (32)
2

where, K is the solution of following Riccati equa-
tion.

KA+ATK - (KB+QQ; BTK+QT)+Q=0333)

The (32) shows that the cost depends not only on the
PI gain but also on the weighting matrices Q0 and R .
One possible algorithm for tuning the PI gain is that:
first selects the weighting matrices Q and R, select
PI gain, then compute ARE and cost. If the computed
cost is not a desired value, then select a new PI gain
and go to the next steps.

4. SIMULATION

In simulation, the robot considered is MIROSOT
robot, and detailed specifications are summarized in
the table 1.

The mass of the robot is 0.0612 Kg m/sec’ and the
mass of wheels is 0.0051 kg m/sec” . And other pa-
rameters used in this paper were

b=35mm, c=r/2b,d =10mm.
The robot inertia except wheels and rotor is 0.05

Kgcmsec2 and motor rotor inertia for wheels and

wheel axis is 0.0176 Kgcmsecz. These parameters
were actually measured and computed for MIROSOT
robot designed Yujin Robotics corp.. In this paper,

Table 1. The specifications of MIROSOT robot.

Size 70x70x70 mm
Wheel diameter 45 mm
Rpm 8000
Gear ratio 8:1
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the maximum velocity of the wheel was computed by
the maximum velocity of the motor specification.

By using parameters described above, state space
matrices for the mobile soccer robot are

0 001 1 O
|0 0 001 1
4= 0o 0 o0 of
0 0 0 0
0 -0.01 0 0
L0 0 —0.01 0
1710 0 008284 0.08284
0 0 -0.0828¢ -0.0828¢

0 0

0 0 0010
B= , C:
25.3925 -19.5119 0 0 01
-19.5119  25.3925

For state feedback design, we selected the desired
closed-loop poles as

A =[[-10+j15 -10-j15 -17+{17 -1717]".

Then, the state feedback gain for pole-placement is
obtained by

_55.3639  24.0262 3.2691 1.4802
42.4267 31.2610 25118 1.9250]

and the additional state feedback gain for guarantee
the robust property with respect to the parameter
variation is

E (i 0.0231 0.0250 0.0087+0.0018 ¢ 0.0007+0.0018 ¢
7100177 00192 00066000184 0.0010-0.0018 § |

The state feedback gains obtained here can makes the
exact cancellation of parameter and which locate the
robot poles in the desired location. The actual robot
poles are

-17.0450 +16.9619i
-17.0450 -16.9619i
-10.0050 +14.9967i |
-10.0050 -14.9967i

pol =

The PI controller gain is selected by

K, =210¢| - O Kx,=100% '
= x N = X 5
1 0 1 P 0 1

where, the integrator and proportional gains are se-
lected by considering the tracking error be small.
Simulation results by using designed controller for

various possibie input signals are shown in Fig. 3 to
Fig. 14. The sinusoidal and pulse signal was selected
as a test signal because these signals are frequently
used. Fig. 6, Fig. 10 and Fig. '14 are the trajectory-
following results for these test signals. Each trajecto-
ries followed the A-B-A form, i.e., start from
A(100,100), move to B and return to A.

Fig. 3 to Fig. 6 are simulation results for the sinu-
soidal reference inputs. In the Fig. 3, the desired and
actual velocities are shown. Tracking errors and con-
trol inputs are shown in Fig. 4 and Fig. 5, respectively.
And the desired robot trajectory and simulated trajec-
tory are shown in the Fig. 6.

Fig. 7 to Fig. 10 are simulation results for the pulse
command inputs. It is shown in the Fig. 8 that track-
ing errors jump at t=0 and t=5 because the signs of
the command signals are jump. Also, it is shown in
the Fig. 8 that these abrupt changes in the reference
signal also could be overcome by the controller pre-
sented.

Velocities

—— Desired velocity : right wheel
— - Desired velocity : left wheel
----- Simulated velocity: right wheel
— - Simulated velocity: left wheel

Velocity (rad./sec.)

Time (sec.)

Fig.3. Velocities for sinusoidal reference inputs.

Velocity errors
05 T T T T T

I T I
I R i | —— velocity error: right wheel
o : et i--1 ---- velocity error: left wheel

Error (rad./sec.)

Time (sec.)

Fig.4. Velocity errors for sinusoidal inputs
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Controf inputs Velocity Errors

T T T T T T 3 T T T T

T T T T
: : : : : : : ; . : : -~ error: left wheel
—— control input: T, : i ' ; ~ - grror: right wheel
- control input: T, 777" yo P S ; : :
: ; =
B L LT Fr ey Sy, I GURIpES [ 1]
@ H @
g i H
= : P
R 5
: |
15 I I ! i\\xL)/ i | I |
0 1 2 3 4 5 B 7 8 9 10
Time (sec.) Time (sec.)
Fig.5. Control inputs for sinusoidal inputs Fig.8. Velocity errors for pulse inputs
Trajectories Control Inputs
170 T T T e p—— T 1 1 L
— desired trajectory ' ' : —— control input: T,
— - simulated trajectory : : \ . — - control input: T,
51 s e sSS RSHS SN 1 N ; | :
| T NSRS USRS S S — RN SR SO S
180 : : ' : : : : :
P 3 IUUSE NS N AN IOURRRS OSSO S S i
_ Mo : :
€ : 3
AR : g
7 1304 ; a
120 H-eeees L R M
10 Heeeeee boooome A beennes
: : T . : : ; ; : ; ; : : :
100 fhemsemcfeecace S s NS W N N S % T S SN AR N S N N
80 90 100 110 120 130 140 150 160 170 0 1 2 3 4 5 <] 7 8 9 10
X {cm) Time {sec.)
Fig.6. Trajectories for sinusoidal reference inputs Fig.9. Control inputs for pulse reference inputs
Yelocities Trajectories
20
= AR | e | |
3 =3 IR SR e R DU I S S ] 160 ! ' — desired trajectory
B : : : : S : : -— - simulated trajectory
£ : : : : ALl o e i At Sty e ; »
= ' I I ' ' ' |
fr 1 S—— [ R s PARSS N— E— RN A, [ E > :
g 0 | ; 140
[ ' ' '
> | i H 1 | ) i H !
R R R e e e e oy
—— dssired velocityleftwheel 120H
— - desired velocity.right wheel M
. - simulated velocityleft wheel 110 p
- - simulated velacity:right wheel :
T I I T 100
6 7 38 8 10 20 40 60 80 100 120 140
Time (sec.) X {cm)

Fig.7. Velocities for pulse reference inputs Fig.10. Trajectories for pulse reference inputs
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Yelocities

T T

T T I
—— desired velocity: right wheel
— - desired velocity: lefit wheel

- simulated velocity: right wheel

— - - simulated velocity: left wheel

Velocity (rad./sec.}

Time (sec.)

Fig. 11. Velocities for saw-tooth reference inputs

Velocity Errors
3 T T T T T I T I T
; : : ; 1| — velocity error: right wheel
— - velocity error: left wheel

Error (rad./sec.)

Time (sec.)

Fig.12. Velocity errors for saw-tooth inputs

Caontrol Inputs

3 T T T T T T I T 1
: : : : : —— control input: T,
: . control input: T2
P} S R K S R ARRRRN feee SEEEEEE I
1.......A....A.‘_____.........L......A_____.,: ..................... :. _____ .
® : :
3 1 1
g 0f----- foaeees E O (R foenees R KR [ beoeed]
5 j ! i
[t : : :
. ; —=—
) U S SRS SUUUO SUUUUUE SRR SRS AR SUN —
o S R S FANRRRE RS SR SO S S
3 i ] i i i i i i i
0 1 2 3 4 5 b 7 8 9 10

Tirme (sec.)

Fig.13. Control inputs for saw-tooth reference inputs

Trajectories

I T
—— desired trajectroy
|| — - simulated trajectory

100 110 120 130 140 150
X (cm)

Fig.14. Trajectories for saw-tooth reference inputs

Fig. 11 to Fig. 14 are simulation results for the si-
nusoidal reference inputs.

Tracking errors in Fig. 6 and Fig. 10 are relatively
large because test signals used in this paper were not
computed value from desired trajectory but selected
ones from a general function of time as reference ve-
locities. We are definitely sure that if reference ve-
locities are computed from desired trajectories then
trajectory- following results are more exact.

5. CONCLUSION

In this paper, we studied the modeling and control
of a soccer robot via LPD system. The control struc-
ture presented in this paper consists of two loops. The
first one is the state feedback loop and the other is PI
control loop. The state-feedback is designed for the
transfer function of robot is well conditioned and pa-
rameter insensitive. For this purpose, the pole-
sensitivity is defined and state feedback is designed.

By using auxiliary state feedback which is a pa-
rameter dependent, the presented controller makes the
plant well conditioned and minimizes the pole-
sensitivity. Finally, it is shown that the PI control
loop is equivalent to a type of state-feedback, and the
cost function, which minimizes the tracking error, is
equal to the LQ (Linear Quadratic Optimization) cost.
These properties give us to the tuning ideas for the PI
controller gain which described in section 3.3.

It is shown in this paper that the soccer robot can
be treated more easily via the LPD framework, which
is a type of linear system. And the results of this pa-
per are applicable to other wheeled mobile robots.
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