• Title/Summary/Keyword: Modeling Tool

Search Result 1,885, Processing Time 0.032 seconds

APPLICATION OF VISUALLISP PROGRAMMING LANGUAGE TO 3D SLUICE MODELING

  • Nguyen Thi Lan Truc;Po-Han Chen
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.337-345
    • /
    • 2007
  • Nowadays, it is convenient to use 3D modeling tools for general planning before construction. Normally, a 3D model is built with 3D CAD such as 3D Studio Max, Maya, etc. or simply with AutoCAD. All these software packages are effective in building 3D models but difficult to use, because many provided functions and tools require prior knowledge to build both 2D and 3D designs. Moreover, the traditional method of building 3D models is most time-consuming as experienced operators and manual input are required. Therefore, how to minimize the building time of 3D models and provide easy-to-use functions for users who are not familiar with 3D modeling becomes important. In this paper, the VisualLISP programming language is used to create a convenient tool for efficient generation of 3D components for the AutoCAD environment. This tool will be demonstrated with the generation of a 3D sluice, an artificial passage for water fitted with a valve or gate to stop or regulate water flow. With the tool, users only need to enter the parameters of a sluice in the edit box and the 3D model will be automatically generated in a few seconds. By changing parameters in the edit box and pressing the "OK" button, a new 3D sluice model will be generated in a short while.

  • PDF

Development of the GIS Based Pre- and Post-Processing Tool for the Visual MODFLOW Groundwater Flow Modeling (Visual MODFLOW 지하수 유동 모델링을 위한 GIS 기반 전ㆍ후처리기 개발)

  • Kim, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.65-79
    • /
    • 2003
  • In this study GIS based pre- and post-processing tool for the Visual MODFLOW that is specific software to model groundwater flow is developed. This tool not only makes input data scientifically but also manages input and output data in terms of the groundwater flow analysis. In addition it can storage project products systematically into Oracle database. The most characteristic figure of this processing tool is to provide the module, which automatically or semi automatically develops various grid cell sizes using GIS ArcView and also produces DXF files reflecting various boundary conditions in the modeling zone. In particular, eminences of this research are to create 3 dimensional hydrogeological structures with 2 dimensional GIS ArcView and to conduct pre- and post- processing along with same topology and data format of the MODFLOW.

  • PDF

Design and Implementation of a CASE Tool Supporting Proof of Consistency between OO Models (객체지향 모형 간 일관성 검증을 지원하는 CASE 도구 설계 및 구현)

  • Lee, Seon-Mi;Jeon, Jin-Ok;Ryu, Jae-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.2965-2980
    • /
    • 1999
  • There are several models and the corresponding diagrams to express software system in many kinds of viewpoints, but these are supposed to be integrated and implemented into only one system. Therefore, the software modelers should have the models ensuring the consistency between information in software development life cycle. To support the robust models for modelers using OO modeling methods, i.e. UML, and CASE tools, the meta models of the software architecture and the consistency rules between the models are suggested in this thesis. Finally, the rules are implemented in the OO CASE tool, DEBUTO(Design By UML Tool). It supports UML1.1 notations and has visual modeling editors that enable users make their own software model.

  • PDF

A study on the forecast of Cusp by Cutting Modeling in Worm Screw Process by Side Milling Cutter (Side Milling Cutter 를 이용한 Worm Screw 가공시 절삭 모델링을 통한 Cusp 예측)

  • Kim C.H.;Gwon T.W.;Kang D.B.;Lee M.H;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1893-1896
    • /
    • 2005
  • Cutting force and face roughness have the largest influence on precision of a structure or processing efficiency in cutting processing. Thus cutting force model and face roughness model are necessary for this interpretation. In this paper, tool path model and face roughness model which consider the blade number of a tool and a revolution speed of tool and workpiece in the worm processing using side milling cutter are presented. This model was used to forcast the cusp. Experimental results show that the predicted cusp coincides with experimental one.

  • PDF

A Numerical Model to Analyze Thermal Behavior of a Radiative Heater Disigned for Flip-Chip Bonders (플립칩 본더용 가열기의 열특성 해석을 위한 수치모델)

  • Lee S. H;Kwak H. S;Han C. S;Ryu D. H
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.41-49
    • /
    • 2003
  • This study presents a numerical model to analyze dynamic thermal behavior of a hot chuck designed for flip-chip bonders. The hot chuck of concern is a heater which has been specifically developed for accomplishing high-speed and ultra-precision soldering. The characteristic features are radiative heat source and the heating tool made of a material of high thermal diffusivity. A physical modeling has been conducted for the network of heat transport. A simplified finite volume model is deviced to simulate time-dependent thermal behavior of the heating tool on which soldering is achieved. The reliability of the proposed numerical model is verified experimentally. A series of numerical tests illustrate the usefulness of the numerical model in design analysis.

Chatter Prediction in Endmilling Using Dynamic Cutting Force Modeling (엔드밀링에서의 동절삭력 모델을 이용한 채터예측)

  • Hwang , Cheol-Hyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.104-115
    • /
    • 1999
  • Cutting process, in general, is a closed-loop system consisting of structural dynamics and cutting dynamics, with the cutting forces and the relative displacements between tool and workpiece being the associated variables. There have been a number of works on modeling the cutting process of endmilling, most of which assumed that either one of the tool or workpiece be negligible in tis displacement. In this paper, the relative displacement between tool and workpiece was considered. The proposed model used experimental modal analysis for structural dynamics and an instantaneous uncut chip thickness model for cutting dynamics. Simulation of the model, a time varying cutting system, was performed using 4th order Runge-Kutta method. Subsequent simulation results were utilized to predict chatter over a variety of experiments in slotting operation, showing good agreement.

  • PDF

Development of a CAD/CAM System for Marine Propeller (프로펠러 가공 전용 CAD/CAM 시스템 개발)

  • Jeon, Yong-Tae;Yun, Jae-Ung;Park, Se-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.53-61
    • /
    • 2000
  • The manufacture of a marine propeller typically requires long lead time to generate 5-axis tool path. Hence it may take several weeks to manufacture a satisfactory propeller with a general purpose CAD/CAM system. In this research a dedicated 5-axis CAD/CAM system for machining marine propellers has been developed, The system employs various methods to enhance the productivity : interference-free tool path generation employing check vectors and optimum cutter size determinants. In addition an iterative NURBS modeling technique is used to improve the accuracy of the modeled surface and effective cutting conditions are determined and recommended empirically to increase the productivity. The proposed CAD/CAM system has been implemented with C++ and OpenGL graphic library on the Windows system. The system validation and sample results are also given and discussed.

  • PDF

Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method (반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

MODELING AND CONTROL OF A MAGNETIC SERVO-LEVITATED FAST-TOOL SERVO SYSTEM (자기부상 초정밀 고속 공구 서보 시스템의 모델과 제어)

  • Hector-M.Gutierrez;Paul-I.Ro
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.348-353
    • /
    • 1994
  • Magnetic Servo Levitation (MSL) has been proposed as a method to drive a fast-tool servo system. This paper discusses some fundamental control and modeling issues in the development of a long-range high-bandwidth fast-tool servo based on MSL. A resursive linear model is developed to describe the system's dynamics linear model is developed to describe the system's dynamics, and further used to discuss controller design. For a given controller architecture, the performance of two controllers is then compared, one based on an approximation to the inverse plant dynamics, the second based on a adaptive neural network.

  • PDF

SPECTRAL LINE ANALYSIS/MODELING (SLAM) I: PVANALYSIS

  • Yusuke, Aso;Jinshi Sai (Insa Choi)
    • Publications of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2024
  • Line observations of young stellar objects (YSOs) at (sub)millimeter wavelengths provide essential information of gas kinematics in star and planet forming environments. For Class 0 and I YSOs, identification of Keplerian rotation is of particular interest, because it reveals presence of rotationally-supported disks that are still being embedded in infalling envelopes and enables us to dynamically measure the protostellar mass. We have developed a python library SLAM (Spectral Line Analysis/Modeling) with a primary focus on analyses of emission line data at (sub)millimeter wavelengths. Here, we present an overview of the pvanalysis tool from SLAM, which is designed to identify Keplerian rotation of a disk and measure the dynamical mass of a central object using a position-velocity (PV) diagram of emission line data. The advantage of this tool is that it analyzes observational features of given data and thus requires few computational time and parameter assumptions, in contrast to detailed radiative transfer modelings. In this article, we introduce the basic concept and usage of this tool, present an application to observational data, and discuss remaining caveats.