• Title/Summary/Keyword: Modeling Methods

Search Result 3,804, Processing Time 0.043 seconds

Improvement Method for the Post-Management End System of a Landfill by Applying Total Pollutant Load Concept (오염총량 개념을 적용한 매립장 사후관리종료제도 개선 방안)

  • Chun, Seung-Kyu;Sim, Nak-Jong;Jeon, Eun-Jeong;Ryu, Don-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.15-23
    • /
    • 2021
  • A method of improving the post-management end system of a landfill that reflected total pollutant load was applied to the SUDOKWON 1st Landfill Site. Modeling results showed that the ratio of remaining methane, when compared to the total maximum potential of 2,521 × 106 Nm3, was estimated to be 8.8% in 2020, 7.0% in 2030, and 6.5% in 2040. If the average oxidation rate of 89.1% in 2005-2019 was applied, the ratio decreased by 1.01% in 2020, 0.76% in 2030, and 0.70% in 2040. This suggests that if the amount of methane generated is all emitted from the surface of the landfill after 2025, the real amount emitted to the atmosphere is less than that in 2019; therefore, the post-management end is possible. According to the results of trend analysis of the quality of leachate water, effluent criteria for Biochemical Oxygen Demand (BOD) can be satisfied in 2024, while those for Chemical Oxygen Demand (COD) and Total Nitrogen (T-N) can be satisfied in 2047 and 2117, respectively. If the post-management end system changed based on total pollutant load, the post-management can be terminated BOD today and COD within a few years; however, the fact that T-N could be terminated only after 2041 shows the need to fundamentally change management methods.

Numerical Modeling of Optical Energy Transfer Based on Coherent Beam Combination under Turbulent Atmospheric Conditions (대기 외란 상황에서 결맞음 빔결합을 통한 광학 에너지의 전달 방법 수치 모델링)

  • Na, Jeongkyun;Kim, Byungho;Cha, Hyesun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.274-280
    • /
    • 2020
  • In this paper, the effect of atmospheric turbulence is numerically modeled and analyzed via a phase-screen model, in regard to long-range optical energy transfer using coherent beam combination. The coherent-beam-combination system consists of three channel beams pointing at a target at a distance of 1-2 km. The phase and propagation direction of each channel beam are assumed to be corrected in an appropriate manner, and the atmospheric turbulence that occurs while the beam propagates through free space is quantified with a phase-screen model. The phase screen is statistically generated and constructed within the range of fluctuations of the structure constant Cn2 from 10-15 to 10-13 [m-2/3]. Particularly, in this discussion the shape, distortion, and combining efficiency of the 3-channel combined beam are calculated at the target plane by varying the structure constant used in the phase-screen model, and the effect of atmospheric turbulence on beam-combination efficiency is analyzed. Analysis with this numerical model verifies that when coherent beam combination is used for long-range optical energy transfer, the received power at the target can be at least three times the power obtainable by incoherent beam combination, even for maximal atmospheric fluctuation within the given range. This numerical model is expected to be effective for analyzing the effects of various types of atmospheric-turbulence conditions and beam-combination methods when simulating long-range optical energy transfer.

The Relationship among Coach Support, Resilience and Self-Rated Health for Golf Participants (골프참여자의 코치지원과 적응유연성 및 주관적 건강의 관계)

  • Kim, Hyung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.228-240
    • /
    • 2021
  • This study was conducted with the goal of establishing a foothold for lifelong sports as well as establishing golf as a desirable leisure activity through the analysis of the relationship between golf participants' coach support, resilience and self-rated health. To achieve the goal of this study, a total of 300 questionnaires were distributed and 300 copies were collected back. Out of those returned questionnaires, insincerely replied or double-replied questionnaires were excluded and finally 278 questionnaires were analyzed for this study. For analysis of the data, frequency analysis, exploratory factor analysis, reliability analysis, confirmatory factor analysis, correlation analysis, and structural equating modeling were conducted using SPSS 18.0 and AMOS 18.0. Main findings were as follows: First coach support had a positive effect on resilience. Second, resilience had a positive effect on self-rated health. Third, coach support had a positive effect on self-rated health. Fourth, resilience mediated the relationship between golf participant coach support and self-rated health. Therefore, golf instructors should achieve specialization and diversification of educational programs through continuous learning about various teaching methods.

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid (무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Cho, Jeong-Rae;Han, Seong-Wook;Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.427-435
    • /
    • 2021
  • An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

Regression Analysis-based Model Equation Predicting the Concentration of Phytoncide (Monoterpenes) - Focusing on Suri Hill in Chuncheon - (피톤치드(모노테르펜) 농도 예측을 위한 회귀분석 기반 모델식 -춘천 수리봉을 중심으로-)

  • Lee, Seog-Jong;Kim, Byoung-Ug;Hong, Young-Kyun;Lee, Yeong-Seob;Go, Young-Hun;Yang, Seung-Pyo;Hyun, Geun-Woo;Yi, Geon-Ho;Kim, Jea-Chul;Kim, Dae-Yeoal
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.548-557
    • /
    • 2021
  • Background: Due to the emergence of new diseases such as COVID-19, an increasing number of people are struggling with stress and depression. Interest is growing in forest-based recreation for physical and mental relief. Objectives: A prediction model equation using meteorological factors and data was developed to predict the quantities of medicinal substances generated in forests (monoterpenes) in real-time. Methods: The concentration of phytoncide and meteorological factors in the forests near Chuncheon in South Korea were measured for nearly two years. Meteorological factors affecting the observation data were acquired through a multiple regression analysis. A model equation was developed by applying a linear regression equation with the main factors. Results: The linear regression analysis revealed a high explanatory power for the coefficients of determination of temperature and humidity in the coniferous forest (R2=0.7028 and R2=0.5859). With a temperature increase of 1℃, the phytoncide concentration increased by 31.7 ng/Sm3. A humidity increase of 1% led to an increase in the coniferous forest by 21.9 ng/Sm3. In the deciduous forest, the coefficients of determination of temperature and humidity had approximately 60% explanatory power (R2=0.6611 and R2=0.5893). A temperature increase of 1℃ led to an increase of approximately 9.6 ng/Sm3, and 1% humidity resulted in a change of approximately 6.9 ng/Sm3. A prediction model equation was suggested based on such meteorological factors and related equations that showed a 30% error with statistical verification. Conclusions: Follow-up research is required to reduce the prediction error. In addition, phytoncide data for each region can be acquired by applying actual regional phytoncide data and the prediction technique proposed in this study.

Partitioning Interwell Tracer Test and Analysis Method for Estimating Oil Pollutants in the Underground (지중 유류오염량 추정을 위한 분배추적자 시험 및 해석방법)

  • Jeong, Chan-Duck;Kim, Yong-Cheol;Myeong, Woo-Ho;Bang, Sung-Su;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.99-112
    • /
    • 2022
  • From early 2000, many researchers in the groundwater and soil environment remediation project tried to calculate the pollution level and pollution remediation cost and reflect it in the design. In addition, by identifying the movement characteristics of oil pollutants in the underground environment, many researchers tried to derive design factors necessary for pollution purification. However, although the test should be conducted in an area contaminated with oil, the toxicity and risk are too great for testing by deliberately leaking pollutants that are harmful to the human body. And as oil-contaminated areas are promoted by military units such as returned US military bases, there is a limit to access by the general public. In addition, since the indoor simulation test and the field application test have been carried out separately from each other, it was difficult to compare and review various simulation tests Therefore, in this study, PITT (Partitioning Interwell Tracer Test) and analysis methods were specifically presented through actual tests so that field workers could easily use them with the help of the military base and the Korea Rural Community Corporation Soil Environment Restoration Team. However, in order to directly reflect the distribution tracer test results in the pollution remediation design, it is necessary to reduce the analysis errors by comparing the analysis results of the existing soil pollution survey, physical exploration, and numerical modeling. In addition, it is judged to be cautious in the analysis because errors can easily occur due to various factors such as the type of oil at the polluted site, the hydraulic conductivity of the aquifer, and the skill of the researcher.

A Study on the Improvement of the System to Reduce Damage on Ammonia Chemical Accident (암모니아 화학사고 피해를 줄이기 위한 제도개선 연구)

  • Lee, Joo Chan;Jeon, Byeong Han;Kim, Hyun Sub
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.306-313
    • /
    • 2022
  • Purpose: The purpose of this study is suggested to improve upon current existing methods of ammonia chemical accident prevention and damage reduction. Method: Ammonia is one of the most common toxic substances that causes frequent chemical accidents. And it was selected as leakage materials according to statistics on chemical accident. Based on actual cases of chemical accidents, CARIS modeling was used to compare the damage impact range of Ammonia and HCl and Cl. Also, find out problems with the current systems. Result: As a result of find out the range of accident influence that spreads to the surroundings when an ammonia chemical accident, it was longer than the range of influence of hydrochloric acid and shorter than that of chlorine. In addition, it was found that when chemical accident by ammonia, hydrochloric acid, or chlorine, there are apartments and schools, which can have an effect. Conclusion: It is decided that it is necessary to determine whether or not chemical accident prevention management plans and statistical investigations are submitted for workplaces dealing with ammonia, and detailed guidelines and reviews are necessary. In addition, it is judged that it is necessary to establish a DB for ammonia handling plants, and it is considered that information sharing and joint inspection among related organizations should be pursued.

Evaluation of 3D Printing Filaments for Radiation Shielding using High Density Polyethylene and Bismuth (고밀도 폴리에틸렌과 비스무트를 이용한 3D 프린팅용 방사선 복합필라멘트 개발 및 차폐능력 평가)

  • Park, Ki-Seok;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.233-240
    • /
    • 2022
  • Research on the presence or absence of radiation shielding for FDM-type filaments has recently begun to be studied, but filaments with shielding capabilities are not sold in Korea, and not studies yet. Therefore, in this research, we will use HDPE (High Density Polyethylene) as a base material, select bismuth as a reinforcing material to manufacture a composite filament, evaluate the shielding ability, and provide basic data for the development of a radiation shielding composite material using 3D printing.A filament is produced by mixing Bismuth with an effective atomic number 83 with HDPE of PE series and adjusting the content of Bismuth to 20% wt, 30% wt, 40% wt. Compounded filaments were evaluated for their physical properties and shielding capabilities by ASTM evaluation methods. As the bismuth content increases, the density, weight, and tensile strength increase, and the shielding capacity is confirmed to be excellent. As a result of the radiation shielding capacity evaluation, it was confirmed that HDPE (80%) + Bi (20%) showed a shielding rate of 82% at 60 kV and a shielding rate of up to 94% or more at 40% bismuth content. In this study, we confirmed that it was possible to produce a radiation shield that is lighter than the metal particle-containing filaments. Furthermore, that have been shield radiation by using HDPE + Bi filaments, and radiation in the medical and radiation industries. The possibility of using it as a shielding complex was confirmed.

A Case Study of Demonstrating the Process of Digital Restoration of the Relationship between History and Culture Focused on "Latelier" (디지털 역사문화 관계성 복원 프로세스 사례연구 - 라뜰리에를 중심으로 -)

  • Kim, Keun-Soo;Ko, Jeong-Min
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.156-164
    • /
    • 2021
  • Currently, digital restoration has s long way to go. Character restoration is only used as a one-time event to restore the shape of a specific person, and building restoration is only composed of digital modeling rather than using the restored cultural assets as content. There is a limit to restoring even the story of a building or a person with the current restoration method alone. Therefore, this study analyzed the method and process of digital restoration of a 'historical and cultural space' encompassing spaces, people, and events, focusing on relationships. In order to derive digital restoration methods, the case of 'Latelier', an indoor theme park based on Gogh, was analyzed. According to the study, the relationship of the person important for digital restoration is important. Based on Gogh's relationship, the process was formalized in four stages for digital restoration: the preparation stage, the digital archive stage, the DB advancement stage, and the demonstration stage. The restoration of the story of the character through the relationship can be expected to converge the past and the present as a true historical restoration, and through this, it is expected that the innovative development of digital restoration can be achieved.

Suggestion of Selecting features and learning models for Android-based App Malware Detection (안드로이드 기반 앱 악성코드 탐지를 위한 Feature 선정 및 학습모델 제안)

  • Bae, Se-jin;Rhee, Jung-soo;Baik, Nam-kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.377-380
    • /
    • 2022
  • An application called an app can be downloaded and used on mobile devices. Among them, Android-based apps have the disadvantage of being implemented on an open source basis and can be exploited by anyone, but unlike iOS, which discloses only a small part of the source code, Android is implemented as an open source, so it can analyze the code. However, since anyone can participate in changing the source code of open source-based Android apps, the number of malicious codes increases and types are bound to vary. Malicious codes that increase exponentially in a short period of time are difficult for humans to detect one by one, so it is efficient to use a technique to detect malicious codes using AI. Most of the existing malicious app detection methods are to extract Features and detect malicious apps. Therefore, three ways to select the optimal feature to be used for learning after feature extraction are proposed. Finally, in the step of modeling with optimal features, ensemble techniques are used in addition to a single model. Ensemble techniques have already shown results beyond the performance of a single model, as has been shown in several studies. Therefore, this paper presents a plan to select the optimal feature and implement a learning model for Android app-based malicious code detection.

  • PDF