• Title/Summary/Keyword: Modeling Methods

Search Result 3,864, Processing Time 0.031 seconds

Trends in research and development of Evacuation modelling at Korea and Overseas (국내외 Evacuation modelling 연구 및 개발의 연구 동향)

  • Gu, Ji Won;Oh, Ryun Seok;Choi, Jun Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.233-234
    • /
    • 2022
  • In order to minimize casualties in case of a fire in a building, it is necessary to anticipate the time required for evacuation of occupants and the delay in evacuation in advance, and prepare countermeasures for possible occurrences. In fact, various factors that cannot be predicted exist and cannot be considered by excluding them, so the risk is predicted and evaluated through quantitative evacuation modeling. In order to understand this, we analyzed domestic and international evacuation modeling research trends. For about 40 years, starting with the characteristics of human movement, an evacuation modeling technique based on scientific methods has been developed through actual fire accident cases and various real-world experiments with humans. Then, in order to analyze the natural reaction of humans, which has a decisive influence in the recognition and decision-making phase, evacuation modelling studies have been conducted in depth using psychological and physical experimental methods.

  • PDF

Surface Catalytic Recombination in Hypersonic Flow: A Review of the Numerical Methods (극초음속 유동에서의 표면 촉매 재결합: 수치해석적 기법 리뷰)

  • Ikhyun Kim;Yosheph Yang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • This paper provides a general overview of surface catalytic recombination in hypersonic flow. The surface catalytic recombination phenomena is elaborated in terms of its general overview and numerical modeling associated with it. The general overview of the surface catalytic recombination phenomena describes the elementary surface reactions for the surface catalytic and the role of the surface catalytic recombination efficiency in the heat transfer determination. In the numerical modeling, the surface catalytic recombination is described based on the stagnation-point boundary layer analysis, and finite-rate surface reaction modeling. Throughout this overview manuscript, a general understanding of this phenomena is obtained and can be used as foundation for deeper application with the numerical computational fluid dynamics (CFD) flow solver to estimate the surface heat transfer in the hypersonic vehicles.

A Study on Management Methods to Improve Utilization of Civil Engineering BIM Library - Focusing on Library Development, Modification and Utilization - (토목 분야 BIM 라이브러리의 활용을 향상시키기 위한 관리 방법에 대한 연구 - 라이브러리 개발, 수정 및 활용을 중심으로 -)

  • Park, Young-Ki;Oh, Ji-Hyun;Park, Hyoung-Soon
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.13-25
    • /
    • 2023
  • Recently, interest in the necessity and practical application of BIM (Building Information Modeling) is also increasing in the civil engineering field. However, there are difficulties in building BIM models and utilizing BIM modeling in the civil engineering field due to various reasons. To this end, it is necessary to develop management tools and research on management methods that can effectively utilize the BIM library in the civil engineering field. Libraries in the civil engineering field are complementary to each other, so library management in consideration of library management in various combinations and continuous updates is important. BIM library management was proposed through the development of a management tool that reflects these characteristics, which is expected to contribute to improving productivity in the field of civil design.

A Comparative Study of 3D MT Modeling Methods (3차원 MT 모델링 기법의 비교 분석)

  • Han, Nu-Ree;Nam, Myung-Jin;Kim, Hee-Joon;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.154-160
    • /
    • 2007
  • This paper compares the characteristics of three different algorithms for three-dimensional (3D) magnetotelluric (MT) modeling. These methods are developed by Mackie et al. (1994), Sasaki (1999) and Nam et al. (2007). The first and second methods are based on the finite difference method (FDM), while the last one the finite-element method (FEM). MT responses, apparent resistivities and phases, for a COMMEMI 3D-2 model show a good agreement with integral equation solutions and only minor discrepancies are found over the anomalous bodies in the 3D model. The computation time of the two methods based on FDM is short and the static divergence correction contributes to speed up. The FEM modeling scheme is accurate but slow.

MARS Modeling for Ordinal Categorical Response Data: A Case Study

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.711-720
    • /
    • 2000
  • A case study of modeling ordinal categorical response data with the MARS method is done. The study is to analyze the effect of some personal characteristics and socioeconomic status on the teenage marijuana use. The MARS method gave a new insight into the data set.

  • PDF

3D Modeling of Automobile Part Using Pattern Scanner and Efficiency Analysis (패턴스캐너를 이용한 자동차부품의 3차원모델링 및 효용성분석)

  • Han Seung-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Effective three dimensional modeling becomes essential in a wide range of drawings, such as construction, machinery and design. In particular, it has been developed as the tool enabling reverse design. Three dimensional modeling requires rapidity, accuracy and tangibility. Data acquisition methods for modeling including contact type coordinate measurement machine, LASER scanner, pattern scanner and digital photogrammetry. In this study, we try to analyze modeling techniques as well as introduce three dimensional modeling using pattern scanner. In addition, this study conducts three dimensional modeling using OPTO-Top pattern scanner with distinguished accuracy and rapidity, and then compare efficiency with digital photogrammetry. And, this study attempts to form environment that enables to turn around models on web in three dimensional ways.

COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS: IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS

  • LEE, SEUNGGYU;JEONG, DARAE;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.83-106
    • /
    • 2016
  • This paper reviews and compares three different methods for modeling incompressible and immiscible ternary fluid flows: the immersed boundary, level set, and phase-field methods. The immersed boundary method represents the moving interface by tracking the Lagrangian particles. In the level set method, an interface is defined implicitly by using the signed distance function, and its evolution is governed by a transport equation. In the phase-field method, the advective Cahn-Hilliard equation is used as the evolution equation, and its order parameter also implicitly defines an interface. Each method has its merits and demerits. We perform the several simulations under different conditions to examine the merits and demerits of each method. Based on the results, we determine the most suitable method depending on the specific modeling needs of different situations.

Performance and Robustness of Control Charting Methods for Autocorrelated Data

  • Chin, Chang-Ho;Apley, Daniel W.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.2
    • /
    • pp.122-139
    • /
    • 2008
  • With the proliferation of in-process measurement technology, autocorrelated data are increasingly common in industrial SPC applications. A number of high performance control charting techniques that take into account the specific characteristics of the autocorrelation through time series modeling have been proposed over the past decade. We present a survey of such methods and analyze and compare their performances for a range of typical autocorrelated process models. One practical concern with these methods is that their performances are often strongly affected by errors in the time series models used to represent the autocorrelation. We also provide some analytical results comparing the robustness of the various methods with respect to time series modeling errors.