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1. Introduction

Statistical process control (SPC) has been used to ach-
ieve and maintain control of various processes in in-
dustry (Stoumbos, Reynolds, Ryan, and Woodall
2000). The control chart is a primary SPC tool to mon-
itor process variability and promote quality improve-
ment by means of detecting process shifts requiring cor-
rective actions. As a graphical monitor, control charts
generally contain a centerline and two other horizontal
lines called control limits, the width of which is often
proportional to the standard deviation of the charted
statistic. If a point plots outside the control limits, the
process is declared not to be in a state of control.

Since the advent of Shewhart charts, many control
charts have been developed to monitor, control, and
improve processes. Traditional control charts such as
x-bar charts, CUSUM (cumulative sum) charts, and
exponentially weighted moving average (EWMA)
charts assume the independence of observations over

time. With significant advances in measurement and
data collection technology, however, measurements
are taken at increasingly higher rates and are more
likely to be autocorrelated (Montgomery and Woodall
1997; Woodall and Montgomery 1999). This leads to
a significant deterioration of traditional control chart
performance, a phenomenon that has been discussed
by Johnson and Bagshaw (1974), Bagshaw and Johnson
(1975), Harris and Ross (1991), Alwan (1992), Woodall
and Faltin (1993), and many others. Positive autocorre-
lation typically increases the variance of the charted
statistic so that the control limits determined under the
independence assumption are too narrow, giving a
higher-than-expected number of false alarms. Gold-
smith and Whitefield (1961) revealed this relation be-
tween the nature of autocorrelation and the false alarm
rate for CUSUM charts.

There are two primary classes of approaches for con-
trol charting in the presence of autocorrelation: Apply-
ing traditional control charts to the original autocorre-
lated data with the control limits adjusted to account
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for the autocorrelation (Johnson and Bagshaw 1974;
Vasilopoulos and Stamboulis 1978; Yashchin 1993;
Wardell, Moskowitz, and Plante 1994; VanBrackle
and Reynolds 1997; Zhang 1998) and fitting a time-
series model to the process data and applying control
charts to the uncorrelated residuals of the model with
normal control limits (Alwan and Roberts 1988
Wardell, Moskowitz, and Plante 1992; Runger, Wille-
main, and Prabhu 1995; Lin and Adams 1996; Apley
and Shi 1999). Moreover, many control charting tech-
niques in the second category are designed to take into
account the specific characteristics of the autocorre-
lation through time series modeling (e.g., Box and
Ramírez 1992; Luceño 1999; Apley and Shi 1999;
Chin and Apley 2006; Apley and Chin 2007).

In light of the fact that effective methods for control
charting autocorrelated processes are of increasing im-
portance as data-rich environments such as in manu-
facturing and service industries proliferate, this paper
surveys various methods and investigates their relative
performance and robustness. Here, robustness is with
respect to errors in the fitted time series models that
are used to represent the autocorrelation. Many of the
papers just cited have noted that lack of robustness to
modeling errors is one of the most serious shortcom-
ings of control charts for autocorrelated data. Although
for the performance comparison we primarily rely on
simulation, for the robustness comparison we develop
analytical results that provide insight into why some
charts are robust but others are not.

The format of the remainder of the paper is as
follows. Section 2 presents a survey of control chart-
ing techniques for autocorrelated data. In Section 3,
the performances of such methods are compared for a
variety of autocorrelated processes that can be repre-
sented as autoregressive moving average (ARMA)
time series models. We derive some analytical robust-
ness results in Section 4 and verify these with simu-
lation in Section 4. Section 5 concludes the paper.

2. Survey of Control Charting Methods
for Autocorrelated Data

Through this paper, the process data xt (t is a time in-
dex or observation number) is assumed to follow an
ARMA process model, plus (potentially) an additive
deterministic mean shift,  , the form of which is

(Box, Jenkins, and Reinsel 1994)

 


  

where B is the time-series backward shift operator de-
fined such that     ;  is an independently
and identically distributed (i.i.d.) Gaussian process
with mean 0 and variance  denoted  ~ NID(0, );
    

 ⋯  
 and

    
 ⋯  

 are the AR
and MA polynomials of order p and q, respectively.
   for all t for the in-control process and  ≠ 
for the out-of-control process. We are assuming, with-
out loss of generality, that the in-control mean is zero.
The model residuals (i.e., the one-step-ahead pre-
diction errors) are generated via the linear filtering op-
eration (Apley and Shi 1999).

 


 
 






  




  


   


(1)

where  is a filtered version of the
deterministic mean shift  . The residuals are un-
correlated under the assumption that the fitted model
used to generate the residuals is a perfect representa-
tion of reality. Because this is never the case in prac-
tice, a later section of this paper is devoted to quantify-
ing the effect of modeling errors on the performance
of the charts. For the time being, however, we assume
that there are no modeling errors.

2.1 Conventional Methods Modified for Auto-
correlated Data

In this section, we review Shewhart, CUSUM (cum-
ulative sum), and EWMA charts applied either to the
autocorrelated data with control limits modified to take
into account the autocorrelation or to the residuals et.

Vasilopoulos and Stamboulis (1978) proposed modi-
fied control limits for an x-bar chart and an s chart for
autocorrelated data xt that follow a second-order autor-
egressive [AR(2)] model with a constant mean shift 

   


  

The  control limits on  are given by



124 Chang-Ho Chin Daniel W. Apley

±      (2)

where n is the subgroup size and     is a
correction factor that widens/narrows the control limits
to take into account the autocorrelation (see the
Appendix of Vasilopoulos and Stamboulis (1978) for
specific values). The constant L is chosen to provide a
desired in-control average run length (ARL) or a false
alarm rate. In the case of no serial correlation so that
   and    , the       , and the
control limits reduce to the traditional ±Lσ control
limits. For example,  control limits on uncorrelated da-
ta give an in-control ARL of 370. As an example of auto-
correlated data, suppose that    and    .
In this case, the adjusted  control limits for sub-
groups of size n = 5 are ± while the traditional
control limits ± are much narrower and
would result in many false alarms.

Johnson and Bagshaw (1974) established a theoretical
basis for obtaining approximate thresholds h of one-
sided CUSUM charts to provide desired performances
for autocorrelated data. They considered the one-sided
CUSUM chart proposed by Page (1955) with a test
statistic Ci = max[0, xi－ K + Ci-1] for observations xi,
where E(xi) = 0, Var(xi) =  < , and∞ K is a reference
value. For autocorrelated AR(1) and MA(1) processes,
the run length distribution and its ARL (≈ h2/ ) were
approximated by establishing the convergence of the
normalized partial sums to a Wiener process and using
the usual Wiener process approximation. The threshold
h were defined with the estimate of the standard
deviation  and a threshold hI which is based on the
assumption of zero correlation and unit variance for
the observations. If the estimate of the standard devia-
tion,     is used for AR(1) autocorrelated
data x1, x2, x3, ,… xn, the threshold h becomes
   and the corresponding ARL

≐






  

 


 
  

  
 




   . Johnson and

Bagshaw (1974) derived some approximate formula for
modifying (usually widening) the control limits to take
into account the autocorrelation. The correction factor
is a function of the parameters of the ARMA model
used to represent the autocorrelation.

Zhang (1998) proposed the EWMASTchart, an EWMA
chart for stationary processes, in which the charted sta-

tistic is the EWMA statistic introduced by Roberts
(1959)

        , (3)

where z0 = 0, and  is a constant ( ≺ ≤ ). The
difference between the EWMAST and the conven-
tional EWMA chart is that the variance of EWMA sta-
tistic zt, upon which the control limits are based, is cal-
culated using the autocorrelation function of xt (de-
noted byρ(k) for lag k = 1, 2, 3, ):…


      

 

  

(4)

This reduces to the conventional EWMA variance
(see Hunter, 1986), when no autocorrelation exists in
the data (i.e., ρ(k) = 0). As for the aforementioned
Shewhart and CUSUM charts, the control limits for
the EWMAST chart are also established based on the
variance of chart statistic, taking into account the auto-
correlation. The objective is to provide a desired false
alarm rate of in-control ARL.

Traditional control charts also can be applied di-
rectly to the model residuals in Equation (1) without
any modification of the control limits, as long as the
process model is accurate, in which case the residuals
are uncorrelated. One common example of residual-
based control charts is an EWMA control chart on the
residuals, which is of the form        
with control limits ±σ , where    


equals the steady-state (large t) version of  in
Equation (4) when there is no autocorrelation. This
control charting scheme provides the same ARL as an
EWMA control chart on independent observations 
with control limits ±  . Another ver-
sion of residual-based control charting scheme pro-
posed by Jiang et al. (2002) is monitoring residuals
obtained by subtracting the proportional integral de-
rivative (PID) predictor from the original process da-
ta:      . Residual-based control charts have
been broadly investigated (Berthouex, Hunter, and
Pallesen 1978, Alwan and Roberts 1988, Montgomery
and Mastrangelo 1991, Superville and Adams 1994,
Wardell, Moskowitz, and Plante 1994, Runger, Wille-
main, and Prabhu 1995, Lin and Adams, 1996, Vander
Wiel 1996, Apley and Shi 1999, Lu and Reynolds
1999a, English, Lee, Martin, and Tilmon 2000).
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2.2 Methods Developed for Autocorrelated
Data

Equation (1) implies that et is composed of random
shock at and the filtered version of the deterministic
mean shift  . The  component experiences certain
dynamics that depend on the ARMA process model,
after which it settles down to a steady-state value if the
ARMA model is stable and invertible and  is a step
mean shift in the original process. To illustrate how a
step mean shift in the original process can result in a
time-varying mean shift in the residuals, consider the
mechanical vibratory system of Pandit and Wu (1983),
an ARMA(2,1) model for which is given by (Jiang et
al. 2000),

  
 

  

where   . For a step mean shift defined as
   for t > 0 and 0, otherwise, the residual mean
 oscillates about zero as shown in <Figure 1>, be-
fore eventually converging to a small steady-state
value. This property that any significant initial dynam-
ics soon decay to a minor lasting effect on the re-
siduals has been referred to as forecast recovery
(Superville and Adams 1994; Apley and Shi 1999).
Forecast recovery is detrimental to the detection per-
formance of traditional control charts.
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Figure 1. Residual Mean

In order to improve the charting performance in the
face of forecast recovery, a number of residual-based
control charts have been proposed that specifically
look for the presence of the dynamics or “patterns”
represented by  in the residuals. Such charts include

the CUSCORE (Fisher 1925, Bagshaw and Johnson
1977, Box and Ramírez 1992, Box and Luceño 1997,
Luceño 1999), the GLRT (Apley and Shi 1999), the
optimal general linear filter (OGLF, Apley and Chin
2007), and the optimal second-order linear filter
(OSLF, Chin and Apley 2006).

One of the various CUSCORE Charts based on the
efficient score statistics of Fisher (1925) was proposed
by Luceño (1999) and analyzed by Shu, Apley, and
Tsung (2002), Runger and Testik (2003), and Luceño
(2004). The upper one-sided CUSCORE is calculated
recursively via

]0};~)2/~(max[{ 1 ttttt eSS μμ−+= − (5)

and sounds an alarm when St exceeds a pre-specified
threshold. The GLRT statistic of Apley and Shi (1999)
based on a likelihood ratio test also uses a feared re-
sidual mean shift as the amplifier

)(max)(
,,1

tTtG
N ξξ =

≡ ,

where ( ) jj jtj ja etT μμσ ξ
ξ

ξ
ξ

~~)( 1
2/1

1
22 ∑∑= = +−

−
= . (6)

The GLRT statistic tests for mean shifts occurring at
each time t－ξ + 1 (ξ = 1, 2, ,… N) within a moving
window of length N.  in Equation (6) can be con-
sidered as a measure of correlation between the re-
siduals and a feared signal occurring at time t － ξ +
1. The higher the correlation, the more likely it is that
a feared signal occurred at that specific time. The
GLRT signals when G(t) exceeds a pre-specified
threshold h chosen to provide a desired in-control
ARL. In situations that residual mean shift dynamics
are pronounced (Apley and Shi 1999), the GLRT out-
performs traditional control charts such as the
Shewhart and CUSUM charts applied to the residuals
which do not make use of the valuable information in
the dynamics.

We can view the Equations (5) and (6) for generat-
ing the charted statistics as multiplying the residuals
by a sequence of detector coefficients that are pre-
cisely the elements of  . The conceptual effect of this
is to amplify the presence of  in the residuals fol-
lowing a mean shift. Note that  is sometimes called
the feared signal, and the CUSCORE and GLRT are
viewed as matched filters. The OGLF and OSLF have
a similar intent, except that their coefficients are only
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based on  and do not necessarily coincide with the
elements of  .

The OGLF was developed recognizing that many
common control charts can be viewed as charting the
output of a linear filter applied to process data (Apley
and Chin 2007). The statistics of many control charts
such as the Shewhart and the EWMA charts applied to
xt can be represented in the form of    ,
where        ⋯ is some linear
filter in impulse response form and {hj : j = 0, 1, 2, }…
are the impulse response coefficients of the filter (see
Box, Jenkins, and Reinsel 1994 for basic background
on linear filtering). For the EWMA in Equation (3), zt

= H(B)xt = (λ (1 (1－ －λ)B)-1)xt = (λ +λ(1－λ) B +
λ(1－ λ)2B2 + )… xt and hj = λ(1－λ)j. The
Shewhart individual chart with statistic    has the
identity filter, H(B) = 1 (see Apley and Chin (2007)
for more examples). This generalization also applies to
residual- based charts, where one can view the residual
generation as a linear pre-filter    applied
to xt, and then the filter  is applied to  . <Figure
2> depicts this graphically.

More specifically, the OGLF charted statistic pro-
posed by Apley and Chin (2007) is of the form

    
 



  , (7)

where Tr is a suitably large truncation time and control
limits are fixed at ±1 because the filter coefficients can
be scaled accordingly. A gradient-based filter opti-
mization strategy was also proposed for directly de-
termining the filter coefficients {hj} to minimize the
out-of-control ARL (denoted by ARL1) while con-
straining the in-control ARL (denoted by ARL0) to
some desired value. In this respect, the OGLF is auto-
matically tuned to best detect the presence of  in the
residuals.

The OSLF chart of Chin and Apley (2006) is a spe-
cial case of the OGLF defined such that H(B) is re-

stricted to the class of all second-order linear filters,
which considerably simplifies its design and imple-
mentation. Specifically, the OSLF charted statistic is
of the form

  




 



  


 , (8)

where  ,  ,  , andγ are the OSLF design parame-
ters to be determined and the control limits are ±1 due
to the scaling constantγ. The design procedure of the
OSLF uses the same ARL1 optimization criterion and
ARL0 constraint as the OGLF. For certain autocorre-
lated processes with prominent residual mean dynam-
ics, the OGLF and OSLF coefficients tends to mimic
the shape characteristic of the residual mean. In many
examples (Chin and Apley 2006), the OSLF performs
substantially better than an optimized EWMA and al-
most as good as the OGLF.

3. Performance Analysis

3.1 Simulation Strategy
As discussed in Section 2, two primary methods to

deal with the adverse effects of autocorrelation on con-
trol charts are adjusting the control limits according to
the nature of the autocorrelation and control charting
the residuals. For the latter, one can either apply stand-
ard control charts or control charts that are designed to
detect the dynamics of the residual mean. For the per-
formance comparison, we focus on residual-based con-
trol charts because they generally perform better, are
more straightforward to design, and have more tract-
able ARL computation. Apley and Lee (2008) point-
ed out that the residual-based EWMA has a better
performance/robustness tradeoff relative to an EWMA
on xt.

The performance of residual-based control charts de-
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Figure 2. Block Diagram Representation of a Control Chart Statistic  Generated via a Linear Filtering peration.
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Table 1. Zero-state ARL Comparison for the OGLF, the OSLF, the CUSCORE, and the GLRT
Tim

Series
Model

Shift OGLF OSLF OPtimal
EWMA

CUSCORE GLRT

No.   Type Size ARL0zs ARL1zs ARL0zs ARL1zs ARL0zs ARL1zs ARL0zs ARL1zs ARL0zs ARL1zs
1 0 0 Step 0.5 499.24

(3.05)
28.38
(0.10)

499.24
(3.05)

28.38
(0.10)

499.24
(3.05)

28.38
(0.10)

499.63
(3.18)

31.27
(0.11)

500.60
(3.11)

48.34
(0.26)

2 0 0 Step 1.5 500.81
(3.15)

5.45
(0.02)

500.81
(3.15)

5.45
(0.02)

500.81
(3.15)

5.45
(0.02)

500.74
(3.17)

5.45
(0.02)

500.12
(3.14)

5.66
(0.02)

3 0 0 Step 3 500.02
(3.14)

1.87
(0.01)

500.02
(3.14)

1.87
(0.01)

500.02
(3.14)

1.87
(0.01)

500.77
(3.16)

1.79
(0.01)

500.83
(3.18)

1.92
(0.01)

4 0 0 Step 4 500.43
(3.16)

1.21
(0.00)

500.43
(3.16)

1.21
(0.00)

500.43
(3.16)

1.21
(0.00)

499.28
(3.15)

1.20
(0.00)

500.78
(3.13)

1.31
(0.00)

5 0.9 0 Step 0.5 500.16
(2.71)

353.79
(1.79)

500.16
(2.71)

353.79
(1.79)

500.16
(2.71)

353.79
(1.79)

500.46
(2.62)

375.76
(1.88)

500.36
(3.14)

473.82
(2.96)

6 0.9 0 Step 1.5 500.37
(2.86)

129.60
(0.57)

500.37
(2.86)

129.60
(0.57)

500.37
(2.86)

129.60
(0.57)

499.01
(3.01)

138.02
(0.78)

500.48
(3.13)

324.75
(2.16)

7 0.9 0 Step 3 499.24
(3.03)

47.32
(0.31)

500.75
(3.07)

48.00
(0.32)

500.76
(3.00)

49.73
(0.22)

499.81
(3.11)

30.99
(0.28)

500.64
(3.15)

78.77
(0.85)

8 0.9 0 Step 4 499.96
(3.11)

14.01
(0.18)

500.63
(3.10)

14.00
(0.18)

500.77
(3.06)

29.44
(0.14)

499.17
(3.08)

8.04
(0.13)

500.64
(3.15)

14.92
(0.29)

9 0.9 0 Spike 0.5 499.14
(3.15)

490.17
(3.12)

500.43
(3.14)

493.43
(3.11)

500.55
(3.17)

500.13
(3.15)

500.18
(3.18)

491.94
(3.11)

10 0.9 0 Spike 1.5 499.29
(3.14)

418.03
(3.11)

499.20
(3.12)

424.69
(3.13)

499.34
(3.15)

454.13
(3.14)

499.95
(3.15)

433.78
(3.14)

11 0.9 0 Spike 3 499.98
(3.17)

84.12
(1.76)

500.13
(3.14)

88.45
(1.81)

499.01
(3.15)

176.54
(2.38)

499.23
(3.12)

97.98
(1.87)

12 0.9 0 Spike 4 500.66
(3.13)

6.25
(0.43)

499.62
(3.19)

7.00
(0.45)

500.76
(3.14)

27.85
(0.98)

500.70
(3.14)

8.41
(0.54)

13 0 0 Sinusoid S1 499.22
(3.09)

15.78
(0.05)

499.22
(3.09)

15.78
(0.05)

500.56
(3.14)

122.56
(1.31)

499.62
(3.15)

15.82
(0.06)

499.33
(3.14)

19.64
(0.09)

14 0 0 Sinusoid S2 499.51
(3.08)

30.74
(0.11)

499.51
(3.08)

30.74
(0.11)

500.63
(3.18)

225.55
(2.13)

500.12
(3.10)

31.04
(0.13)

500.15
(3.14)

46.59
(0.29)

15 0 0 Sinusoid S3 499.12
(3.07)

33.34
(0.14)

500.17
(3.13)

43.47
(0.25)

499.44
(3.17)

177.91
(1.78)

499.50
(3.05)

33.86
(0.16)

500.84
(3.10)

48.45
(0.31)

16 0 0 Sinusoid S4 500.91
(3.10)

10.64
(0.04)

499.37
(3.11)

11.40
(0.04)

499.45
(3.16)

26.23
(0.16)

499.92
(3.13)

10.58
(0.04)

499.80
(3.16)

10.54
(0.04)

17 0.9 -0.9 Step 0.5 499.80
(2.72)

446.77
(2.37)

499.80
(2.72)

446.77
(2.37)

499.80
(2.72)

446.77
(2.37)

499.61
(4.80)

343.69
(3.70)

499.14
(3.14)

475.79
(3.10)

18 0.9 -0.9 Step 1.5 499.63
(2.93)

142.06
(1.73)

500.91
(3.10)

162.26
(2.21)

499.74
(2.73)

257.46
(1.24)

500.74
(3.97)

86.56
(1.43)

499.37
(3.13)

193.75
(2.38)

19 0.9 -0.9 Step 2 500.86
(3.09)

41.78
(1.12)

500.03
(3.06)

42.21
(1.14)

500.93
(3.16)

194.06
(0.91)

500.01
(3.39)

29.02
(0.77)

499.19
(3.12)

55.60
(1.36)

20 0.9 -0.9 Step 3 499.05
(3.09)

3.16
(0.08)

500.37
(3.17)

3.33
(0.13)

499.27
(3.14)

74.70
(1.53)

500.01
(3.14)

3.33
(0.19)

499.61
(3.15)

2.43
(0.08)

21 0.9 0.5 Step 0.5 499.02
(2.73)

206.73
(0.97)

500.13
(2.81)

206.91
(0.96)

500.13
(2.81)

206.91
(0.96)

500.25
(2.75)

235.32
(1.12)

500.13
(3.09)

398.64
(2.52)

22 0.9 0.5 Step 1.5 499.72
(3.00)

50.82
(0.22)

499.72
(3.00)

50.82
(0.22)

499.72
(3.00)

50.82
(0.22)

499.15
(3.07)

54.34
(0.29)

500.95
(3.16)

113.86
(0.79)

23 0.9 0.5 Step 3 500.08
(3.12)

10.73
(0.08)

500.08
(3.12)

10.73
(0.08)

499.27
(3.11)

10.69
(0.08)

500.45
(3.11)

6.88
(0.07)

500.11
(3.15)

7.96
(0.09)

24 0.9 0.5 Step 4 500.62
(3.15)

2.77
(0.03)

500.40
(3.12)

2.85
(0.04)

500.36
(3.14)

2.83
(0.04)

499.21
(3.16)

1.85
(0.03)

499.56
(3.15)

1.68
(0.01)

25 0.9 0.5 Spike 0.5 499.70
(3.11)

497.13
(3.15)

499.46
(3.13)

497.88
(3.14)

500.83
(3.19)

499.58
(3.17)

499.30
(3.15)

496.52
(3.16)

26 0.9 0.5 Spike 1.5 499.55
(3.10)

457.83
(3.08)

500.84
(3.17)

466.37
(3.14)

499.25
(3.17)

467.66
(3.13)

499.40
(3.15)

463.13
(3.13)

27 0.9 0.5 Spike 3 500.99
(3.13)

207.74
(2.52)

500.57
(3.15)

258.83
(2.75)

499.10
(3.15)

260.10
(2.78)

499.41
(3.12)

213.92
(2.56)

28 0.9 0.5 Spike 4 500.47
(3.16)

50.40
(1.30)

499.38
(3.17)

83.39
(1.75)

500.16
(3.19)

84.60
(1.76)

500.15
(3.14)

54.04
(1.45)

29 0 0 Ramp 0.5 499.18
(3.08)

33.28
(0.11)

499.18
(3.08)

33.28
(0.11)

499.83
(3.07)

33.33
(0.11)

500.09
(3.08)

35.94
(0.12)

499.88
(3.14)

59.15
(0.31)

30 0 0 Ramp 1.5 500.09
(3.12)

10.50
(0.02)

500.09
(3.12)

10.50
(0.02)

500.04
(3.14)

10.51
(0.02)

499.56
(3.11)

10.96
(0.02)

500.61
(3.11)

11.17
(0.02)

31 0 0 Ramp 3 500.82
(3.13)

6.60
(0.01)

500.82
(3.13)

6.60
(0.01)

499.78
(3.17)

6.60
(0.01)

500.94
(3.16)

6.82
(0.01)

499.50
(3.14)

6.88
(0.01)

32 0 0 Ramp 4 499.16
(3.14)

5.49
(0.01)

499.16
(3.14)

5.49
(0.01)

500.84
(3.13)

5.50
(0.01)

500.54
(3.17)

5.64
(0.01)

500.12
(3.15)

5.74
(0.01)
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pends strongly on the characteristics of the residual
mean, which depend on the characteristics of the proc-
ess as represented by the ARMA model and the form
and magnitude of the mean shift. Thus, we consider a
broad combination of scenarios in the 32 examples
listed in <Table 1>. All processes for comparison are
modeled as ARMA(1,1) plus possibly a deterministic
mean shift

 

 
   ,

which includes, as special cases, AR(1) when  = 0,
MA(1) when  = 0, and i.i.d. when  =  = 0.
Without loss of generality,  is assumed to be 1 for
the remainder of the paper. Step, spike, sinusoidal, and
ramp mean shifts are considered with a wide range of
magnitudes from 0 to 4. The step mean shift is de-
fined as  = 0 for t < 1 and  =  for t 1 and the≥
spike mean shift is defined as  =  and  = 0 for
≠ . The sinusoidal shifts are denoted S1 S－ 4 in
<Table 1>. S1, S2, and S3 are sinusoidal functions with

amplitude 0.75 and periods of 2, 4, and 8 timesteps, re-
spectively. S4 has amplitude 1.5 and period 8 time-
steps. The ramp mean shift is defined as    for t <
1,    for 1 ≤ t < 10 and    for t 10.≥
<Figure 3> shows the residual means of Examples 4, 8,
12, 16, 20, 24, 28, and 32. For different magnitude
mean shifts, the residual means have exactly the same
shapes but are scaled differently.

We compare EWMA, OGLF, OSLF, CUSCORE,
and GLRT charts in terms of their ARL performance.
The EWMA chart is one of the most popular control
charting methods and is often recommended for mon-
itoring the residuals of autocorrelated data. In fact, the
EWMA chart is revealed to be optimal in several sit-
uations under consideration in this paper. Note that the
EWMA reduces to a Shewhart individual chart in the
limit (asλ approaches 1.0) such as in Examples 9~12
and 25~28, which is known to be effective at detecting
spikes. Although it will be shown that the CUSCORE
outperforms the EWMA for the examples in which the
residual mean has pronounced dynamics, there are
quite a few examples in which the EWMA outper-
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Figure 3. Illustration of residual mean shifts for ARMA(1, 1) processes : (a) i.i.d. process ( =  = 0) with a step
mean shift of size 4; (b) AR(1) process ( = 0.9) with a step mean shift of size 4; (c) AR(1) process (
= 0.9) with a spike mean shift of size 4 (d) i.i.d. process ( =  = 0) with a sinusoidal mean shift of period
8 and amplitude 1.5; (e) ARMA(1,1) process ( = 0.9,  = -0.9) with a step mean shift of size 3; (f)
ARMA(1,1) process ( = 0.9,  = 0.5) with a step mean shift of size 4; (g) ARMA(1,1) process ( =
0.9,  = 0.5) with a spike mean shift of size 4; (h) i.i.d. process ( =  = 0) with a ramp mean shift of
size 4.
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forms the CUSCORE or performs quite comparably to
it (e.g., the common, practical scenarios of Examples
1~ 4 and 29~30, in which there is a sustained step and
a drifting ramp shift in i.i.d. data). The PID chart is not
included into the comparison. We had compared the
PID chart to the OGLF and OSLF charts in Chin and
Apley (2006) and Apley and Chin (2007) and found
that when one used the design guidelines suggested by
Jiang et al. (2002), the performance of the PID chart
was not competitive with the other charts.

We calculated the zero-state ARL for each example
based on Monte Carlo simulation with 25,000 repli-
cates. The zero-state ARL refers to the ARL of which
the evaluation starts with the initial observation. Because
the EWMA, OGLF, and OSLF charts are inherently
two-sided and the absolute value in Equation (6) makes
the GLRT chart two-sided, the two-sided versions of
the CUSCORE chart is considered for comparison. The
lower-sided CUSCORE statistic would be constructed
substituting - for  in Equation (5), and the two-sid-
ed version consists of the two one-sided versions
together. The CUSUM chart is not included in this
comparison because the EWMA chart performance is
virtually identical (Vander Wiel 1996, Yang and Makis
1997, Montgomery 2005). The residual- based EWMA
chart for comparison is defined as

         (9)

where  ≺ ≤  is the EWMA parameter and ζ is a
scaling constant. The Shewhart individual chart is in-
directly considered for comparison because it is a spe-
cial case of the EWMA chart when   . The EWMA,
OGLF, OSLF charts are optimally designed to mini-
mize the zero-state out-of-control ARL while constrain-
ing the zero-state in-control ARL to be 500. The out-of-
control ARL minimization is for an assumed mean shift
shape and magnitude and a shift time-of-occurrence
that coincides with the initial observation. Chin and
Apley (2006) and Apley and Chin (2007) plot the im-
pulse response coefficients for all of the examples that
we consider here. For the EWMA chart, the value of 
is chosen using the same constrained optimization
criterion. The thresholds of the CUSCORE and GLRT
charts are determined to provide the desired in-control
ARL using Monte Carlo simulations and for the design
parameters of two, the values that Luceño(1999) and
Apley and Shi (1999) recommended are respectively
taken. The handicap for the CUSCORE chart was chos-

en proportional to the feared signal (e.g., ) as
shown in Equation (5). For the GLRT chart, we used
the same window length N (= 20) as recommended in
Apley and Shi (1999). Luceño (1999) proposed the two
versions of the CUSCORE chart, depending on whether
or not the in Equation (5) is reinitialized whenever
the statistic reaches its zero limit. The CUSCORE with-
out reinitialization is excluded from comparison be-
cause of its significant ineffectiveness in the steady
state (Runger and Testik 2003; Chin and Apley 2006;
Apley and Chin 2007).

3.2 Performance Comparison based on the
zero-state ARL

The EWMA and OSLF charts are special cases of
the OGLF and thus, cannot perform better than the
OGLF. However, the EWMA is included to represent
control charts which do not take advantage of the in-
formation on the residual mean dynamics and show
the performance difference from control charts devel-
oped for a time-varying mean shift. As expected, the
OGLF, CUSCORE, and GLRT charts outperform the
EWMA chart by a wide margin, except for the i.i.d.
processes with a step mean shift and other processes
with a mean shift of size 0.5 which do not have prom-
inent residual mean dynamics.

For the 32 examples under analysis, <Table 1> shows
the zero-state ARLs denoted by ARL0zs and ARL1zs,
respectively. The standard errors are in parentheses.
The minimum out-of-control ARL for each example is
indicated by bold font in each row of <Table 1>. In
general, the OGLF or CUSOCRE chart performs best
for examples listed in <Table 1>. The superiority of
one over the other chart is determined depending on
whether the initial dynamics plays a larger role than
the lasting effects of the residual mean. The OGLF
performs better than the CUSCORE in Examples 5, 6,
20, 21, and 22 where the residual mean has prominent
dynamics and rapidly converges to zero or a very small
steady state shift and the control charts are expected to
rely primarily on the initial dynamics. The opposite is
true for Examples 7, 8, 17, 18, 19, 23 and 24 where
the residual mean converges to zero very slowly or has
a small but considerable steady state shift compared
to the significance of initial dynamics. The OGLF
chart performs slightly better than the CUSCORE
and GLRT for Examples 29~32 with ramp mean shifts,
but nearly identically to the OSLF charts and the opti-
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mized EWMAs. For the others, they perform com-
parably. As a simplified version of the OGLF, the
OSLF combines the design and implementation effi-
ciency with performance that is substantially better
than an optimized EWMA and as good as the OGLF
in a number of examples.

Note that the CUSOCRE charts cannot be set up for
Examples 9~12 and 25~28. Chin (2008) showed that
the CUSCORE chart statistic of Luceño (1999) might
totally lose the detection capability. It was illustrated
with Examples 9~12 and 25~28. Examples 9~12 have
spike mean shifts which have only two non-zero co-
efficients at the first two timesteps and the remaining
zero coefficients as shown in <Figure 3(c)>. Once the
CUSUCORE statistic is less than the threshold at t = 3,
it would continue taking the same value afterward be-
cause the term in the bracket of Equation (5) becomes
zero and will not have a chance to signal.

For the i.i.d. processes with a step mean shifts
(Examples 1~4), CUSUM charts are optimal (Mousta-
kides 1986). As a result, the impulse response of
OGLF and OSLF charts are tuned to be virtually iden-
tical to those of the optimized EWMA, because an
EWMA chart can be designed to approximately per-
form comparable to any (two-sided) CUSUM chart.
The good performance of the CUSCORE chart can al-
so be explained in that the CUSUM and CUSCORE
charts coincide for step mean shifts in i.i.d. data.

The OGLF and OSLF charts have many interesting
characteristics that result in performance superior to
optimized EWMA charts (Chin and Apley 2006;
Apley and Chin 2007). According to the ARMA proc-
ess model and the nature of mean shift, the OGLF and
OSLF charts may be tuned to be highly correlated with
the residual means, mimic a combined Shewhart-
EWMA scheme, or have impulse response coefficients

which are reminiscent of the matched filter of the cor-
responding GLRT chart, as illustrated in the following.
For processes with pronounced dynamic patterns of re-
sidual mean shifts as in Examples 9~16 and 18~20, the
matched filters of the OGLF, OSLF, CUSCORE, and
GLRT charts are used to increase the detection proba-
bilities by fostering the correlation with the residual
means. The chart statistics in Equations (5), (6), (7),
and (8) include the summation of the product of the re-
siduals and the matched filter coefficients. The sum-
mation can be viewed as a measure of the correlation
between the residuals and the matched filter. Hence,
the higher the correlation between two signals, the
larger the magnitude of chart statistic. <Figure 4> il-
lustrates how the impulse response coefficients of the
OGLF chart statistic for Example 20 forms the correla-
tion with the residual means. The time-reversed co-
efficients are superimposed on the residual means be-
cause the initial coefficients are applied to the most re-
cent observations. As time goes on, the OGLF has high
positive correlation and negative correlation by turns,
resulting in a large magnitude of the OGLF statistic
and a high probability of exceeding its control limits.
An analogous mechanism applies to the OSLF, CUS-
CORE, and GLRT charts. Due to this characteristic,
the OGLF (ARL1zs = 3.1) for Example 20 dramatically
outperforms the optimized EWMA (ARL1zs= 74.7).

The OGLF and OSLF charts for Examples 7 and 8
are essentially a weighted combination of a Shewhart
chart and an EWMA chart as shown in <Figure 5(a)>.
The first two impulse response coefficients correspond
to a Shewhart chart filter and the remaining coefficients
correspond to an EWMA chart filter. The OGLF and
OSLF charts would be expected to behave similar to a
combined Shewhart-EWMA scheme (Lucas and Sacc-
ucci 1990; Lin and Adams 1996; Lu and Reynolds
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Figure 4. The OGLF for Example 20 applied to the Residual Mean Three Timesteps after the Occurrence of the Shift
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1999b; Reynolds and Stoumbos 2001), the only differ-
ence being that the latter simultaneously runs two sepa-
rate chart statistics, while the former combines them in-
to one statistic. Combined Shewhart-EWMA schemes
are widely known to work well for processes where the
residual mean has a pronounced initial spike and then
converges to a small steady-state value. The Shewhart
component of combined Shewhart-EWMA schemes is
effective at detecting the initial spike and its EWMA
component is effective at detecting the lasting small
steady state shift, which makes them outperform opti-
mized EWMA charts. <Figure 5(b)> shows the impulse
response coefficients of the OGLF and OSLF charts for
Examples 25~28, the time-reversed version of which is
almost equivalent to those of the residual mean shown
in <Figure 3(g)>. The time-reversed OGLF {hj}is al-
most perfectly correlated with the residual mean five
timesteps after the shift occurs, and the OGLF performs
substantially better than the optimized EWMA for
large shifts (   and   ).

The GLRT performs slightly better than the OGLF
and CUSCORE charts for autocorrelated processes
such as Examples 16, 20, and 24 where the mean shift
has a considerable lasting effect on the residuals.
Runger and Testik (2003) also showed that the GLRT
has a better performance over the CUSOCRE chart
with reinitialization for similar situations such as an
unbounded linear trend mean shift and a sinusoidal
mean shift.

4. Robustness Analysis

ARMA model-based approaches have been very

popular in SPC applications, but have also suffered the
criticism of lacking robustness to inevitable errors in
fitting an ARMA model to process data. Since the con-
trol charts are designed based on the assumption of no
modeling errors, any modeling error affects the control
chart performance represented by the in-control ARL,
the out-of-control ARL, the false alarm rate, and so
forth. Hence, the robustness to modeling errors is a
very critical element of control charts required to en-
sure they perform well in practice.

Most of the research on robustness to modeling er-
rors have focused on empirically studying the effects
of modeling errors (e.g. Adams and Tseng 1998;
Apley and Shi 1999; Lu and Reynolds 1999a for re-
sidual- based charts), but have not investigated it
analytically. Exceptions are Apley (2002), Apley and
Lee (2003), and Apley and Lee (2008), in which ana-
lytical measures were derived for the sensitivity of the
in-control performance of control charts with respect
to modeling errors, which enables one to quantify and
corroborate the empirical findings. The analytical ex-
pressions of Apley and Lee (2008) apply to any con-
trol chart that can be viewed as the output of a linear
filter applied to process data. In this section, we show
that the robustness findings from the Monte Carlo sim-
ulations for the OGLF, OSLF, EWMA, and Shewhart,
and GLRT charts can be explained by the theoretical
results of Apley and Lee (2008).

Suppose that the true parameter  differs from the
estimate  . The residuals generated by Equation (1)
are not independent, but actually follows the ARMA
(1,1) model
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Figure 5. Impulse response coefficients of the OGLF charts : (a) Example 8 and (b) Example 28
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 

 




  



 

  







 
 
 

(10)

where the “^” symbol denotes an estimate of a quan-
tity. With  underestimated, the residual autocorrela-
tion would be positive and the resulting standard devi-
ation of  would be substantially larger than that un-
der the assumption of no modeling error. The in-
creased variance inflates the false alarm rate, which
leads to the decrease in the in-control ARL. That is,
the effect of modeling errors on the ARL corresponds
closely to the effect of modeling errors on the variance
of the control chart statistic. Apley and Lee (2008) de-
fined the sensitivity as the partial derivative of the var-
iance of the control chart statistic (which we generi-
cally denote by ) with respect to the ARMA parame-
ters, scaled by the nominal variance:
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where   ⋯   ⋯   is the vector of
ARMA parameters and 

 is the variance of the control
chart statistic when   . When multiplied by a pa-
rameter error (denoted by ∆ or ∆), Equations
(11) and (12) represent the percentage change in the
variance, due to modeling errors. Hence, the sensi-
tivity measures can be viewed as the analytical per-
centage variance changes (PVC) for modeling errors,
which are compared with the empirical PVCs in
<Table 3>. The analytical PVCs agree reasonably well
with the empirical PVCs and are also fairly consistent
with the percentage ARL changes, in the sense that
larger PVC values almost always correspond to larger
ARL percentage changes. Although it would be more
desirable to directly consider the sensitivity of the
ARL, it is unfortunately too analytically intractable. As

shown in Equations (11) and (12), instead, the stand-
ardized variance changes with respect to modeling er-
rors are proposed as the indirect measures for their
corresponding ARL changes of control charts.

Using Equations (11) and (12), we derive the fol-
lowing sensitivity measures for the GLRT, OGLF, and
OSLF charts applied to  . See Appendix I for the de-
tailed derivation. These measures reduce to relatively
simple expressions for the ARMA(1, 1) processes con-
sidered in Section 3. For each (t) of the GLRT ap-
plied to the residuals defined in Equation (1),
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For the OGLF defined in Equation (7),
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For the OSLF defined in Equation (8),
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For the EWMA chart defined in Equation (9), as a spe-
cial case of the OSLF chart when    ,
     , and   ,
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For the Shewhart chart as a special case of the EWMA
chart when    ,

0)()( 1,1, == θφ ShewharteShewharte SS .

<Table 2> shows the sensitivities for the 32 Exam-
ples considered in Section 3. The minimum sensitivity
for each example is indicated by bold font. Several in-
teresting characteristics are revealed. As shown in
Equations (A.1) and (A.2), the sensitivities are the

Table 2. Sensitivities for the OGLF, the OSLF, the optimal EWMA, and the GLRT when the one of the true parame-
ters of an ARMA(1,1) process is incorrectly estimated ( = 0.89 vs. = 0.9 and = -0.89 vs. = -0.9)

Time
Series
Model Shift OGLF OSLF

Optimal
EWMA GLRT

No.   Type Size Se( ) Se( ) Se( ) Se( ) Se( ) Se( ) Se( ) Se( )
1 0 0 Step 0.5 1.906 -1.906 1.906 -1.906 1.906 -1.906 1.800 -1.800
2 0 0 Step 1.5 1.516 -1.516 1.516 -1.516 1.516 -1.516 1.800 -1.800
3 0 0 Step 3 0.648 -0.648 0.648 -0.648 0.648 -0.648 1.800 -1.800
4 0 0 Step 4 0.226 -0.226 0.226 -0.226 0.226 -0.226 1.800 -1.800
5 0.9 0 Step 0.5 19.607 -1.996 19.607 -1.996 19.607 -1.996 1.651 -0.330
6 0.9 0 Step 1.5 18.683 -1.986 18.683 -1.986 18.683 -1.986 1.651 -0.330
7 0.9 0 Step 3 6.914 -0.782 6.717 -0.742 16.468 -1.958 1.651 -0.330
8 0.9 0 Step 4 3.958 -0.360 3.960 -0.360 14.337 -1.924 1.651 -0.330
9 0.9 0 Spike 0.5 -1.014 1.197 -0.999 1.107 0 0 -0.994 0.994

10 0.9 0 Spike 1.5 -1.006 1.069 -0.999 1.099 0 0 -0.994 0.994
11 0.9 0 Spike 3 -1.003 1.044 -0.999 1.093 0 0 -0.994 0.994
12 0.9 0 Spike 4 -1.001 1.033 -0.999 1.096 0 0 -0.994 0.994
13 0 0 Sinusoid S1 -1.815 1.815 -1.815 1.815 0 0 -1.800 1.800
14 0 0 Sinusoid S2 0.018 -0.018 0.018 -0.018 0 0 0 0
15 0 0 Sinusoid S3 1.430 -1.430 1.443 -1.443 0.784 -0.784 1.286 -1.286
16 0 0 Sinusoid S4 1.217 -1.217 1.387 -1.387 0.768 -0.768 1.286 -1.286
17 0.9 -0.9 Step 0.5 19.607 -1.052 19.607 -1.052 19.607 -1.052 -0.887 6.298
18 0.9 -0.9 Step 1.5 1.683 11.641 -1.006 11.408 19.416 -1.051 -0.887 6.298
19 0.9 -0.9 Step 2 -1.006 11.410 -1.006 11.408 19.228 -1.050 -0.887 6.298
20 0.9 -0.9 Step 3 -0.720 6.715 -0.922 5.745 0 0 -0.887 6.298
21 0.9 0.5 Step 0.5 19.200 -3.967 19.228 -3.969 19.228 -3.969 4.506 -2.171
22 0.9 0.5 Step 1.5 16.468 -3.836 16.468 -3.836 16.468 -3.836 4.506 -2.171
23 0.9 0.5 Step 3 8.460 -3.143 8.469 -3.154 8.462 -3.143 4.506 -2.171
24 0.9 0.5 Step 4 3.921 -1.609 3.726 -2.135 3.726 -2.135 4.506 -2.171
25 0.9 0.5 Spike 0.5 -0.876 0.654 -0.334 0.361 0 0 -0.879 0.645
26 0.9 0.5 Spike 1.5 -0.876 0.654 -0.105 0.110 0 0 -0.879 0.645
27 0.9 0.5 Spike 3 -0.876 0.654 -0.068 0.069 0 0 -0.879 0.645
28 0.9 0.5 Spike 4 -0.876 0.654 -0.129 0.137 0 0 -0.879 0.645
29 0 0 Ramp 0.5 1.954 -1.954 1.954 -1.954 1.992 -1.992 1.714 -1.714
30 0 0 Ramp 1.5 1.790 -1.790 1.790 -1.790 1.954 -1.954 1.714 -1.714
31 0 0 Ramp 3 1.511 -1.511 1.511 -1.511 1.838 -1.838 1.714 -1.714
32 0 0 Ramp 4 1.345 -1.345 1.345 -1.345 1.734 -1.734 1.714 -1.714
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weighted sum of the impulse response coefficients of
the AR and MA polynomials of the original process,
where the weights are given by the autocorrelation
function of the control chart statistic. Specifically, the
sensitivities mainly rely on the type (positive or neg-
ative) and decay rate of autocorrelation functions of
the control chart statistic and AR and MA polynomials
of the original process. The more slowly decaying the
autocorrelation functions, typically the higher the sen-
sitivities. Hence, the sensitivity of a control chart may
change for different original processes. The EWMA
charts for 11 of 32 examples reduce to a Shewhart
chart, which has zero sensitivities. Consider the EWMA
charts for the remaining 21 examples, for which the
chart statistics have positive autocorrelation. The mag-
nitudes of their sensitivities can be explained in the
light of the autocorrelation of the original processes.
For Examples 1~4, 15~16, and 29~32 in which the
original processes are i.i.d., the sensitivities for both 
and  are low. For Examples 5~8, 17~19, and 21~24,
the AR polynomials have highly positive autocorrela-
tion and thus, the sensitivities for  are high. On the
other hand, the sensitivities for  are relatively low
due to the MA polynomials of Examples 5~8 with no
autocorrelation, those of Examples 17~19 with neg-
ative autocorrelation, and those of Examples 21~24
with low positive autocorrelation.

For i.i.d. processes (    ), both sensitivities are
the same because the autocorrelations of the  
and  are identical. Except for processes such as
Examples 2~ 4, 9~20, 25~28, 31, and 32 in which the
optimally tuned EWMA charts turn out to have large

’s resulting in very small moving window lengthsλ
(e.g., it becomes a Shewhart chart with    for
Examples 9~14 and 25~28) or when the MA poly-
nomial of the original process has negative autocorre-
lation, the GLRT chart has the lowest sensitivities (i.e.,
the most robust) to the modeling error due to the small
number of impulse response coefficients constituting a
moving window, and the OGLF are at least as robust
as the EWMA is. Note that the GLRT chart consistently
has small sensitivities for all examples, but the EWMA
chart does not such as for Examples 5~8, 17~19, and
21~22. While the moving window length of the GLRT
chart is fixed (i.e., N = 20), those of the OGLF, OSLF,
and EWMA chart are optimally determined according
to the magnitude of the feared signal through the de-
sign procedures. For the same type of feared signal,

the sensitivities tend to get smaller as the magnitude of
the feared signal increases. In order to increase the de-
tection probability in this case, a control chart is de-
signed to place more weight on recent observations to
improve the detection of mean shifts of large magni-
tude, which leads to a control chart with fast-decaying
autocorrelation function. For instance, the λ’s of the
EWMA charts for Examples 1~ 4 are 0.047, 0.242,
0.676, and 0.887, respectively. Since the impulse re-
sponse coefficients {gj} of the EWMA are  ,
the EWMA chart has the largest λ for the largest
feared signal and has the smallest sensitivities. This is
consistent with the sensitivity expressions in Equations
(A.1) and (A.2). This fact implies that EWMA charts
with other larger non-optimal λ’s would be more ro-
bust, even though their performance are a little bit
worsened. Apley and Lee (2003) also found that larger
values of λ do indeed result in better robustness.
However, the performance for small shifts may be so
much worse for larger values of λ that a more attrac-
tive alternative is to use a smaller value of λ but use
control limits that are wider than normal to prevent an
excessive number of false alarms. Apley and Lee
(2003) and Apley (2002) also presented methods for
suitably widening the control limits for this purpose.

The Se,GLRT( ,) and Se,GLRT( ,) of the GLRT are
identical for the same type of mean shift regardless of
magnitude, respectively, because the same unit magni-
tude feared signal is used as a matched filter. Note that
the sinusoidal means for Examples 13 and 14 have dif-
ferent periods, which results in different sensitivities,
whereas the sensitivities are the same for Example 15
and 16 of the same period. We calculate the sensitiv-
ities of the GLRT for only one of the GLRT statistics
(e.g., for a mean shift occurring at only one of the N
timesteps within the window). We chose    in the
following examples, because it is in the mid range of
all the values in Equation (6) and most reasonablyζ
represents the sensitivity of the GLRT.

We consider two situations that  and  are in-
correctly estimated for Examples 17~20 (let the pa-
rameter values listed in <Table 1> represent the esti-
mated parameters). Suppose that the values of true pa-
rameters are  = 0.89 and  = -0.9 in one situation
and  = 0.9 and  = -0.89 in the second situation.
For these errors in estimating  and  , respectively,
Equation (10) implies that the residuals with no mean
shift obey the models
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respectively. The Monte Carlo simulations with
100,000 replicates are used to compare the analytical
results of sensitivities with empirical results. The ac-

tual PVC, the first-order approximation of the PVC
based on sensitivity measures, and corresponding in-
control ARLs for the incorrectly estimated parameters
are shown in <Table 3>. The actual PVCs agree rea-
sonably well with the approximations, and the close
correspondence between the PVCs and the percentage

Table 3. Comparison of the Analytical Results of Sensitivities with Empirical Results for Examples 17~20
Estimated
parameter Shift

True
parameter OGLF OSLF

Optimized
EWMA GLRT




Type Size
 

PVC()
Se()Δ

ARL0,
(std. err.)

PVC()
Se()Δ

ARL0,
(std. err.)

PVC()
Se()Δ

ARL0,
(std. err.)

PVC()
Se()Δ

ARL0,
(std. err.)

No.  
PVC()

Se()Δ
ARL0,
(std. err.)

PVC()
Se()Δ

ARL0,
(std. err.)

PVC()
Se()Δ

ARL0,
(std. err.)

PVC()
Se()Δ

ARL0,
(std. err.)

17 .9 -.9 Step .5 .89 -.9 -17.043
-19.607

611.73
(1.67)

-17.036
-19.607

611.48
(1.67)

-17.036
-19.607

611.89
(1.67)

0.902
0.887

482.03
(1.51)

.9 -.89 -1.050
-1.052

511.06
(1.39)

-1.050
-1.052

510.78
(1.39)

-1.050
-1.052

510.34
(1.38)

6.487
6.298

434.67
(1.37)

.87 -.9 -40.198
-58.821

901.34
(2.50)

-40.201
-58.821

898.77
(2.50)

-40.201
-58.821

906.22
(2.52)

2.793
2.661

448.08
(1.40)

.9 -.87 -3.135
-3.156

522.56
(1.42)

-3.122
-3.156

521.35
(1.41)

-3.122
-3.156

522.20
(1.42)

20.555
18.894

323.31
(1.01)

18 .9 -.9 Step 1.5 .89 -.9 -1.452
-1.683

531.18
(1.58)

1.033
1.006

484.28
(1.49)

-16.895
-19.416

621.38
(1.72)

0.902
0.887

480.71
(1.50)

.9 -.89 12.211
11.641

382.26
(1.10)

12.103
11.408

373.76
(1.15)

-1.062
-1.051

509.25
(1.40)

6.487
6.298

436.40
(1.38)

.87 -.9 -2.904
-5.049

570.44
(1.69)

3.173
3.018

453.30
(1.40)

-39.892
-58.248

953.12
(2.69)

2.793
2.661

455.10
(1.43)

.9 -.87 40.330
34.923

248.08
(0.68)

39.705
34.224

230.39
(0.69)

-3.128
-3.153

522.19
(1.44)

20.555
18.894

323.86
(1.01)

19 .9 -.9 Step 2 .89 -.9 1.036
1.006

476.16
(1.47)

1.033
1.006

483.16
(1..49)

-16.737
-19.228

629.58
(1.77)

0.902
0.887

480.58
(1.51)

.9 -.89 11.991
11.410

368.10
(1.12)

12.103
11.408

371.35
(1.14)

-1.053
-1.050

510.63
(1.42)

6.487
6.298

433.45
(1.36)

.87 -.9 3.109
3.018

446.96
(1.38)

3.173
3.018

451.21
(1.39)

-39.607
-57.684

1011.6
(2.93)

2.793
2.661

450.01
(1.42)

.9 -.87 39.600
34.230

228.89
(0.69)

39.705
34.224

230.94
(0.70)

-3.137
-3.150

527.98
(1.48)

20.555
18.894

323.57
(1.00)

20 .9 -.9 Step 3 .89 -.9 0.783
0.720

487.67
(1.53)

0.965
0.922

480.10
(1.50)

0.096
0.000

501.69
(1.59)

0.902
0.887

479.44
(1.50)

.9 -.89 7.137
6.715

396.28
(1.24)

6.140
5.745

402.12
(1.26)

0.096
0.000

499.33
(1.57)

6.487
6.298

434.46
(1.35)

.87 -.9 2.437
2.160

460.42
(1.43)

2.895
2.766

445.65
(1.40)

0.382
0.000

493.23
(1.56)

2.793
2.661

446.10
(1.40)

.9 -.87 23.499
20.145

261.02
(0.80)

20.263
17.235

272.64
(0.85)

0.478
0.000

488.59
(1.53)

20.555
18.894

321.63
(1.00)
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changes in ARLs implies that the sensitivity measures
are appropriate as the indirect measures for the ARL
change of control charts with respect to modeling
errors.

For Example 18, the OSLF and EWMA chart statistics
are recursively calculated by    
 and   ,
respectively (Chin and Apley 2006). The respective
variances for both charts under the assumption of no
modeling error are 0.1355 and 0.5179. To illustrate the
effects of modeling errors, we calculate the variances
for both charts experiencing the preceding modeling
error in which only one of the two parameters is in-
correctly estimated. With  overestimated, the actual
variance for the OSLF chart is 0.1369 which is 1.03%
larger than the assumed one. This PVC 1.03% is con-
sistent with the analytical result that the approximate
percentage variance increase in the OSLF variance is
Se,OSLF()(  ) = 1.01%. The actual PVC leads to
the decrease in the in-control ARL from 500 to 484.
With  underestimated, the actual variance for the
OSLF chart is 0.1519 which is 12.10% larger than the
assumed one. This PVC 12.10% is also consistent with
the analytical result that the approximate percentage
variance increase is 11.41%, decreasing the in-control
ARL from 500 to 374. For  and  of the EWMA
chart, the analytical percentage variance decreases are
19.42% and 1.06%, which agree reasonably well with
the actual percentage variance decreases 16.90% and
1.05%, respectively. These increases (decreases) in the
variance of the chart statistic result in higher (lower)
false alarm rates, which decrease (increase) the in-con-
trol ARL. The in-control ARLs for the OSLF chart de-
crease by 3.14% and 25.25% for the true  and  .
Those for the EWMA chart increase by 24.27% and
1.85%, respectively. The difference between the changes
of the variance and performance can be explained in
that performance change of a control charting scheme
is affected by its autocorrelation level as well as its var-
iance with the control limits fixed (Jiang and Tsui
2001). However, the sensitivities provide fairly reason-
able comparison for the robustness to modeling error.
In addition, the sign of the sensitivity indicates whether
the variance and ARL will increase or decrease for a
particular type of modeling error. The negative sign of
the Se,OSLF() for Example 18 imply that the under-
estimation of  results in an increase in variance and a
decrease in ARL.

While the ±0.01 parameter errors may seem small,

they may actually have a substantial effect on the
performance. For example, the first row of <Table 3>
shows that an error of 0.01 in the AR parameter causes
a 17% decrease in the variance of the EWMA and
OGLF statistics, which is substantial. The surprisingly
large sensitivity of the charts underscores the need for
analytical sensitivity expressions that explain the
mechanisms behind the lack of robustness of certain
charts. Because larger parameter errors are also of in-
terest, we extend this analysis to the parameter errors
of ±0.03, and the results are shown in <Table 3>. The
difference among the analytical results of sensitivities
and the changes of the variances and performances be-
comes larger, because the sensitivity is based on a first-
order partial derivative. Note that the sensitivities still
provide a reasonable basis for comparison, however.
For the OSLF with incorrectly estimated  and  in
Example 18 aforementioned, the PVCs 3.17% and
39.71% are still fairly consistent with the analytical re-
sult 3.02% and 34.22%, respectively. The PVC -3.13%
for the EWMA chart with  underestimated is also
consistent with the analytical result -3.15%. For the
EWMA chart with  overestimated, the difference
between the analytical approximation and actual PVC
gets to be larger from 14.9% (for the parameter error
of +0.01) to 46.0% (for the parameter error of +0.03).
Similar augmentations are found in other examples.
For all of Examples 17~20 under analysis, however,
this inevitable augmentation does not have any influ-
ence on selecting the most robust chart and does not
blur distinct difference between sensitivities of control
charts.

5. Conclusions

In this paper, we have surveyed control charting
schemes for autocorrelated data, with a focus on per-
formance and robustness of residual-based control
charts. In the ARL comparison using Monte Carlo
simulations, the OGLF, OSLF, CUSOCRE, and
GLRT charts substantially outperform the optimized
EWMA chart which does not take advantage of the
information hidden in the dynamic characteristics of
the residual mean. For the i.i.d. processes with a step
mean shift, for which there are no prominent dynam-
ics in the residuals, the first three control charts per-
form comparably to the EWMA chart. Generally, the
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OGLF or CUSCORE chart performs the best. The
OGLF chart perform better for processes in which the
residual mean settles down to zero or a very small
steady-state value after experiencing initial prominent
dynamics. The CUSCORE chart is more effective at
detecting a residual mean decaying slowly and con-
verging to a relatively significant steady-state value.
One drawback of the CUSCORE chart with re-
initialization is that it may totally lose the ability to
detect a shift when the feared signal converges to zero
after few initial spikes. The GLRT performs worse
than the EWMA for processes with a short-lived mi-
nor residual mean shift such as Example 5 and 21.

The robustness to modeling errors is a critical char-
acteristic that should be considered when selecting
and designing a control chart. To investigate the ro-
bustness of the control charts under consideration, we
derived analytical expressions for their sensitivity to
ARMA modeling errors and demonstrated their val-
idity by comparing the analytical results with the ac-
tual PVCs and the ARLs calculated using Monte
Carlo simulations. The sensitivity of a chart depends
primarily on the autocorrelation of the chart statistic
and AR and MA polynomials of the original process.
The more slowly decaying the autocorrelation, the
higher the sensitivities in general. The GLRT is the
most robust among the control charts developed for
detecting a pre-specified time-varying mean shift.

No control chart is consistently superior to others in
terms of performance and robustness. However, if it is
possible to quantify the performance and robustness of
a control chart based on the information known a pri-
ori about the original process and the nature of the
mean shift of interest, it would aid in selecting a con-
trol chart more appropriately. The survey and empiri-
cal and analytical results in this paper were provided
for this purpose.

<Appendix I>

For the output    of a general linear filter
applied to an ARMA(p, q) process  , Apley and Lee
(2008) derived the following expressions for the sensi-
tivity measures defined in Equations (11) and (12):

  
 

∞

 : i = 1, 2, ,… p, and (A.1)

  
 

∞

 : i = 1, 2, ,… q, (A.2)

where  denotes the autocorrelation function of 
under the assumption of no modeling errors at lag j
and { : j = 0, 1, 2, } and {… : j = 0, 1, 2, } de… -
note the impulse response coefficients of

   
 

∞


 and     

 

∞


, respec-

tively. We derive the sensitivities for the GLRT,
OGLF, and OSLF charts applied to the residuals of
ARMA(1, 1) processes with parameter  and  un-
der assumption that  ~ NID(0, 1).

For the GLRT chart defined in Equation (6) (Apley
and Shi 1999), the variance and covariance functions
for the Generalized Likelihood Ratio (GLR) statistic
with a moving window of lengthζ are defined as

     and
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The autocorrelation function is obtained as
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Based on the general expressions of the sensitivity
measures (Apley and Lee 2008), the sensitivity meas-
ures for ARMA(1,1) processes are approximated by

∑
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∑

∑
=∑=

−

=

=

−−

=
++∞

=
+

2

0

1

2

1

1
1

1
0

11, ~

~~
22),(
ξ

ξ

ξ

μ

μμ
φρξφ

k

j
j

k

j
kjj

k

k
kkGLRTe PS and

∑
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∑

∑
−=∑=

−

=

=

−−

=
++∞

=
+

2

0

1

2

1

1
1

1
0

11, ~

~~
22),(
ξ

ξ

ξ

μ

μμ
θρξθ

k

j
j

k

j
kjj

k

k
kkGLRTe QS .

The variance, covariance, and autocorrelation func-
tions of the OGLF chart (Apley and Chin 2007) are
given by
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The sensitivity measures for ARMA(1,1) processes
are defined as
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For the OSLF chart defined as Equation (8), the au-
tocorrelation function is defined as (Pandit and Wu
1983)
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The sensitivity measures for ARMA(1,1) processes
are calculated by
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