• Title/Summary/Keyword: Model-free Control

Search Result 568, Processing Time 0.024 seconds

The Research focusing on the Goal-directed Behavior of Duty Free Shop Users (면세점 이용객들의 목표지향적 행동에 관한 연구)

  • Choi, Yu-Jin;Park, Jin-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.73-81
    • /
    • 2015
  • The purpose of this study is to explore structural relationship between cognitive factors and emotional factors in predicting behavioral intention of duty-free users. This study conducted questionnaire survey on 246 users of duty-free shops and analyzed it by using structural equation. As the result of the study, attitude was significantly associated with both desire and behavioral intention. Subjective norm had a significant impact on desire, but had no significant imfact on behavioral intention. Whereas perceived behavioral control did not have a significant influence on desire and intention. Desire, which plays mediating role as a major variable in goal-directed behavioral model, turned out to not only have significant impact on behavioral intention but has the strongest effect as well. This study has its academic meaning in that it explored factors which have effect on decision-making process of duty-free users focusing on goal-oriented behavioral model, which is one of integrated psychological models. In practical terms, this study can be used as a basic material for corporations to establish goals in domestic duty-free shops.

Human Motion Control Using Dynamic Model (동력학 모델을 이용한 인체 동작 제어)

  • Kim, Chang-Hoe;O, Byeong-Ju;Kim, Seung-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

Time-Delay Control for the Implementation of the Optimal Walking Trajectory of Humanoid Robot

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • Humanoid robots have fascinated many researchers since they appeared decades ago. For the requirement of both accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Humanoid robots are highly nonlinear, coupled, complex systems, accordingly the calculation of robot model is difficult and even impossible if precise model of the humanoid robots are unknown. Therefore, it is difficult to control using traditional model-based techniques. To realize model-free torque control, time-delay control (TDC) for humanoid robot was proposed with time-delay estimation technique. Using optimal walking trajectory obtained by particle swarm optimization, TDC with proposed scheme is implemented on whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the proposed TDC for humanoid robots.

Property Control in a Continuous MMA Polymerization Reactor using EKF based Nonlinear Model Predictive Controller

  • Ahn, Sung-Mo;Park, Myung-June;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • A mathematical model was developed for a continuous re-actor in which free radical polymerization of methyl methacrylate (MMA) occurred. Elementary reactions considered in this study were initiation, propagation, termination, and chain transfers to monomer and solvent. The reactor model took into account the density change of the reactor contents and the gel effect. A control system was designed for a continuous reactor using extended Kalman filter (EKF) based non-linear model predictive controller (NLMPC) to control the conversion and the weight average molecular weight of the polymer product. Control input variables were the jacket inlet temperature and the feed flow rate. For the purpose of validation of the control strategy, on-line digital control experiments were conducted with densitometer and viscometer for the measurement of the polymer properties. Despite the com-plex and nonlinear features of the polymerization reaction system, the EKF based NLMPC performed quite satisfactorily for the property control of the continuous polymerization reactor.

  • PDF

Disturbance Torque Suppression Control of Servo Motors for Missile Fin Actuators (미사일 Fin 액츄에이터용 서보모터의 외란 토크 억제 제어)

  • Kim, Chang-Hwan
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.311-343
    • /
    • 2003
  • In this paper, we propose a generalized disturbance torque suppression control scheme of servo motors for missile fin actuators. Our controller consists of both a model based feed-forward controller and a stabilizing feedback controller. The feed-forward controller is designed such that the output of nominal plant tracks perfectly the reference position command with a desired dynamic characteristics. The feedback controller stabilizes the overall closed loop system. Furthermore, the feedback controller contains a free function that can be chosen arbitrary. The free function can be designed so as to achieve both the suppression of disturbances and the robustness to model uncertainties. In order to illuminate the superior performance of our control scheme to the conventional ones, we present some simulation results.

  • PDF

Robust Sampled-Data Controller Design for a Flexible Beam (유연한 빔을 위한 강인한 샘플치 제어기의 설계)

  • Choe, Y.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-72
    • /
    • 2005
  • A new approach is presented to design a robust sampled-data controller for an experimental flexible beam carrying an unknown payload at its free end. The purpose of this paper is to move the free end of the beam to a desired position in the specified time under vibration suppression. We derive a transfer function nominal model for the beam and quantitative description of model uncertainties based on experimentally obtained frequency response data. Robust controllers are designed by applying the sampled-data $H_{\infty}$ control and ${\mu}m-theory$, in which two types of uncertainties, structured and unstructured uncertainties, are adopted for satisfactory performance in terms of hinge position regulation and vibration damping, besides obviously asymptotic stability. The effectiveness of the proposed method is confirmed through simulation and experimentation.

  • PDF

Study on Concurrent Simulation Technique of EPS and A Full Car Model (EPS와 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bong-Choon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.785-787
    • /
    • 2010
  • It is well known that most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the Electric Power System(EPS) or Motor Driven Power System(MDPS) has widely equipped in passenger vehicles. In this research the concurrent simulation technique for an EPS system with MATLAB/SIMULINK and a full vehicle model has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for SUV. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

  • PDF

Performance Evaluation of a Semi-Active ER Damper with Free Piston and Spring (부동피스톤과 스프링을 갖는 반능동 ER댐퍼의 성능평가)

  • Choe, Seung-Bok;Kim, Wan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.691-700
    • /
    • 2000
  • This paper presents a novel type of a semiactive damper featuring an electro-rheological(ER) fluid. Unlike conventional cylindrical ER damper, the proposed one has controllable orifices by the intensity of electric fields (We call it orifice type). The dynamic model of the orifice type ER damper is formulated by incorporating field-dependent Bingham properties of an arabic gum-based ER fluid. Design parameters such as electrode gap are subsequently determined on the basis of the dynamic model. After manufacturing the orifice type ER damper, field-dependent damping forces and damping force controllability are empirically evaluated. In the evaluation procedure, conventional cylindrical ER damper is adopted and its performance characteristics are compared with those of the orifice type ER damper. In addition, the proposed one is installed with a full-car model and its vibration control performance associated with a skyhook controller is investigated.

Reactivity balance for a soluble boron-free small modular reactor

  • van der Merwe, Lezani;Hah, Chang Joo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.648-653
    • /
    • 2018
  • Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR) design, only control rods are available to control such rapid core transient. The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model. The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power.

Simultaneous Optimization of Structural and Control Systems for Vibration Control of Flexible Beams (유연보의 진동제어를 위한 구조계와 제어계의 동시최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3127-3135
    • /
    • 1994
  • An approach to the simultaneous optimal design of structure and control system for large free-free flexible beam is presented. The flexible beam is modeled by the finite element method. And the reduced model of small degree of freedom is constructed by use of modal analysis. The tapered beam is considered so that the number of design variables is not dependent on the increasing number of finite elements. The width of several points of tapered beam and control gain are taken as design variables. The shape of beam and control gain are optimized simultaneously for the minimum weight of total structure including control system subject to the constraints of the magnitude of displacement of beam. It is shown that the simultaneous optimal design of structure and control systems is indeed useful.