• 제목/요약/키워드: Model-based tuning rule

검색결과 31건 처리시간 0.027초

PID 제어기의 모델기반 동조규칙 (A Model-Based Tuning Rule of the PID Controller)

  • 김도응;신명호;권봉재;유성호;박승수;진강규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.261-266
    • /
    • 2002
  • In this Paper, we Propose model-based tuning rules of the PID controller incorporating with genetic algorithms. Three sets of optimal PID parameters for step set-point tracking are obtained based on the first-order time delay model of plants and a genetic algorithm which minimizes performance indices(IAE, ISE and ITAE). Then tuning rules are obtained using the tuned parameter sets, potential rule models and a genetic algorithm. Simulation is carried out to verify the effectiveness of the proposed rules.

  • PDF

RCGA를 이용한 PID 제어기의 모델기반 동조규칙 (Model-based Tuning Rules of the PID Controller Using Real-coded Genetic Algorithms)

  • 김도응;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.1056-1060
    • /
    • 2002
  • Model-based tuning rules of the PID controller are proposed incorporating with real-coded genetic algorithms. The optimal parameter sets of the PID controller for step set-point tracking are obtained based on the first-order time delay model and a real-coded genetic algorithm as an optimization tool. As for assessing the performance of the controllers, performance indices(ISE, IAE and ITAE) are adopted. Then tuning rules are derived using the tuned parameter sets, potential rule models and another real-coded genetic algorithm A set of simulation works is carried out to verify the effectiveness of the proposed rules.

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

유전알고리듬을 결합한 퍼지-신경망 제어 시스템 설계 (On Designing A Fuzzy-Neural Network Control System Combined with Genetic Algorithm)

  • 김용호;김성현;전홍태;이홍기
    • 전자공학회논문지B
    • /
    • 제32B권8호
    • /
    • pp.1119-1126
    • /
    • 1995
  • The construction of rule-base for a nonlinear time-varying system, becomes much more complicated because of model uncertainty and parameter variations. Furthemore, FLC does not have an ability of adjusting rule- base in responding to some sudden changes of control environments. To cope with these problems, an auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), which is known to be very effective in the optimization problem, will be proposed. The tuning of the proposed system is performed by two tuning processes(the course tuning process and the fine tuning/adaptive learning process). The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

유전알고리즘에 기초한 PID 제어기의 동조규칙 (Tuning Rules of the PID Controller Based on Genetic Algorithms)

  • 김도응;진강규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2167-2170
    • /
    • 2002
  • In this paper, model-based tuning rules of the PID controller are proposed incorporating with genetic algorithms. Three sets of optimal PID parameters for set-point tracking are obtained based on the first-order time delay model and a genetic algorithm as a optimization tool which minimizes performance indices(IAE, ISE and ITAE). Then tuning rules are derived using the tuned parameter sets, potential rule models and a genetic algorithm. Simulation is carried out to verify the effectiveness of the proposed rules.

  • PDF

신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계 (Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.

RCGA를 이용한 외란제거용 PID 제어기의 동조규칙 (Tuning Rules of the PID Controller Using RCGAs)

  • 김민정;이윤형;소명옥;하윤수;황승욱;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.448-454
    • /
    • 2007
  • The new tuning rules of the PID controller for the rejection of load disturbance are proposed incorporating with real-coded genetic algorithms (RCGAs). The optimal gain parameters of the PID controller for a first-order plus time delay model are obtained based on a RCGA. Then tuning formula are derived using the tuned parameters sets potential tuning rule models and another RCGA. The performance criteria of the controller are adopted as ISE, IAE and ITAE. A series of simulation are carried out to verify the effectiveness of the proposed tuning rules.

스텝응답에 기반한 PID/PIDA 제어기의 자동동조 (Auto-tuning of PID/PIDA Controllers based on Step-response)

  • 안경필;이준성;임재식;이영일
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.

PSO based tuning of PID controller for coupled tank system

  • Lee, Yun-Hyung;Ryu, Ki-Tak;Hur, Jae-Jung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1297-1302
    • /
    • 2014
  • This paper presents modern optimization methods for determining the optimal parameters of proportional-integral-derivative (PID) controller for coupled tank systems. The main objective is to obtain a fast and stable control system for coupled tank systems by tuning of the PID controller using the Particle Swarm Optimization algorithm. The result is compared in terms of system transient characteristics in time domain. The obtained results using the Particle Swarm Optimization algorithm are also compared to conventional PID tuning method like the Ziegler-Nichols tuning method, the Cohen-Coon method and IMC (Internal Model Control). The simulation results have been simulated by MATLAB and show that tuning the PID controller using the Particle Swarm Optimization (PSO) algorithm provides a fast and stable control system with low overshoot, fast rise time and settling time.

Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화 (Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization)

  • 박건준;김용갑;오성권
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.