In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.
본 논문은 Active Appearance Model(AAM)을 사용하여 주어진 얼굴영상의 포즈추정과 임의 포즈합성 방법을 설명한다. AAM은 다양한 응용분야에 성공적으로 적용되어지고 있는 예제기반 학습모델로 예제들의 변화정도를 학습한다. 그러나 하나의 모델로는 각도 변화가 큰 포즈 변화량을 수용하기 어렵다. 본 논문은 좁은 범위의 각도 변화를 다루는 모델을 포즈별로 생성한다. 주어진 포즈 얼굴을 다룰 수 있는 모델을 이용하여 정확한 포즈추정과 합성이 가능하다. 이때 합성하고자 하는 포즈의 각도가 포즈 추정을 위해 사용된 모델에 학습되어 있지 않은 경우, 미리 학습된 모델간의 선형관계를 통해 문제를 해결한다. Yale B 공개 얼굴 데이터베이스에 대한 실험을 통해 포즈추정 및 합성 정확도를 보이고, 자체 수집한 포즈변화가 큰 얼굴영상에 대한 성공적인 정면 합성 결과를 제시한다.
Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
Journal of Astronomy and Space Sciences
/
제41권2호
/
pp.61-78
/
2024
This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.
3차원 휴먼 자세 추정 모델은 다시점 모델과 단시점 모델로 분류될 수 있다. 일반적으로 다시점 모델은 단시점 모델에 비하여 뛰어난 자세 추정 성능을 보인다. 단시점 모델의 경우 3차원 자세 추정 성능의 향상은 많은 양의 학습 데이터를 필요로 한다. 하지만 3차원 자세에 대한 참값을 획득하는 것은 쉬운 일이 아니다. 이러한 문제를 다루기 위해, 우리는 다시점 모델로부터 다시점 휴먼 자세 데이터에 대한 의사 참값을 생성하고, 이를 단시점 모델의 학습에 활용하는 방법을 제안한다. 또한, 우리는 각각의 다시점 영상으로부터 추정된 자세의 일관성을 고려하는 다시점 일관성 손실함수를 제안하여, 이것이 단시점 모델의 효과적인 학습에 도움을 준다는 것을 보인다. Human3.6M과 MPI-INF-3DHP 데이터셋을 사용한 실험은 제안하는 방법이 3차원 휴먼 자세 추정을 위한 단시점 모델의 학습에 효과적임을 보여준다.
연구목적: 본 연구는 지하공동구 내 다수 작업자의 낙상을 자동으로 판별하기 위한 Top-down 방식의 딥러닝 자세 추정 모델 기반 낙상 검출 모델을 제안하고, 제안 모델의 성능을 평가한다. 연구방법: Top-down 방식의 자세 추정모델 중 하나인 YOLOv8-pose로부터 추론된 결과와 낙상 판별 규칙을 결합한 모델을 제시하고, 지하공동구 내 2인 이하 작업자가 출현한 기립 및 낙상 이미지에 대해 모델 성능지표를 평가하였다. 또한 동일한 방법으로 Bottom-up 방식 자세추정모델(OpenPose)을 적용한 결과를 함께 분석하였다. 두 모델의 낙상 검출 결과는 각 딥러닝 모델의 작업자 인식 성능에 의존적이므로, 작업자 쓰러짐과 함께 작업자 존재 여부에 대한 성능지표도 함께 조사하였다. 연구결과: YOLOv8-pose와 OpenPose의 모델의 작업자 인식 성능은 F1-score 기준으로 각각 0.88, 0.71로 두 모델이 유사한 수준이었으나, 낙상 규칙을 적용함에 따라 0.71, 0.23로 저하되었다. 작업자의 신체 일부만 검출되거나 작업자간 구분을 실패하여, OpenPose 기반 낙상 추론 모델의 성능 저하를 야기한 것으로 분석된다. 결론: Top-down 방식의 딥러닝 자세 추정 모델을 사용하는 것이 신체 관절점 인식 및 개별 작업자 구분 측면에서 지하공동구 내 작업자 낙상 검출에 효과적이라 판단된다.
본 논문에서는 Openpose의 신뢰도를 이용해 3D pose estimation의 정확도를 높이는 방법을 제안한다. 모델의 앞뒤양옆 네 방향에서 pose estimation의 진행하기 위해 3D 모델에 AABB(Axis Aligned Bound Box)를 생성한 다음, box의 네 옆면으로 모델을 투영시킨다. 각 면에 투사된 2D image에 대해 Openpose 2D pose estimation의 진행한다. 네 면에서 생성한 2D 스켈레톤들의 평균을 통해 3D 상의 교차점을 획득한다. Openpose에서 제공하는 신뢰도(confidence)를 이용하여 잘못 나온 2D 관절을 제외하는 것으로 더 정확한 pose estimation의 수행하였다. 실험적인 방법을 통해 신뢰도 0.45 이상의 값을 가지는 joint 만을 사용해 3D 교차점을 구함으로써 3D pose estimation의 정확도를 높였다.
We present a region-based approach for accurate pose estimation of small mechanical components. Our algorithm consists of two key phases: Multi-view object co-segmentation and pose estimation. In the first phase, we explain an automatic method to extract binary masks of a target object captured from multiple viewpoints. For initialization, we assume the target object is bounded by the convex volume of interest defined by a few user inputs. The co-segmented target object shares the same geometric representation in space, and has distinctive color models from those of the backgrounds. In the second phase, we retrieve a 3D model instance with correct upright orientation, and estimate a relative pose of the object observed from images. Our energy function, combining region and boundary terms for the proposed measures, maximizes the overlapping regions and boundaries between the multi-view co-segmentations and projected masks of the reference model. Based on high-quality co-segmentations consistent across all different viewpoints, our final results are accurate model indices and pose parameters of the extracted object. We demonstrate the effectiveness of the proposed method using various examples.
In this study, a model-referenced underwater navigation algorithm is proposed for high-precise underwater navigation using monocular vision near underwater structures. The main idea of this navigation algorithm is that a 3D model-based pose estimation is combined with the inertial navigation using an extended Kalman filter (EKF). The spatial information obtained from the navigation algorithm is utilized for enabling the underwater robot to navigate near underwater structures whose geometric models are known a priori. For investigating the performance of the proposed approach the model-referenced navigation algorithm was applied to an underwater robot and a set of experiments was carried out in a water tank.
International journal of advanced smart convergence
/
제7권2호
/
pp.95-100
/
2018
In this paper, we propose a binarized multi-scale module to accelerate the speed of the pose estimating deep neural network. Recently, deep learning is also used for fine-tuned tasks such as pose estimation. One of the best performing pose estimation methods is based on the usage of two neural networks where one computes the heat maps of the body parts and the other computes the part affinity fields between the body parts. However, the convolution filtering with a large kernel filter takes much time in this model. To accelerate the speed in this model, we propose to change the large kernel filters with binarized multi-scale modules. The large receptive field is captured by the multi-scale structure which also prevents the dropdown of the accuracy in the binarized module. The computation cost and number of parameters becomes small which results in increased speed performance.
KSII Transactions on Internet and Information Systems (TIIS)
/
제2권2호
/
pp.120-133
/
2008
This paper presents a novel approach for facial motion tracking and facial expression cloning to create a realistic facial animation of a 3D avatar. The exact head pose estimation and facial expression tracking are critical issues that must be solved when developing vision-based computer animation. In this paper, we deal with these two problems. The proposed approach consists of two phases: dynamic head pose estimation and facial expression cloning. The dynamic head pose estimation can robustly estimate a 3D head pose from input video images. Given an initial reference template of a face image and the corresponding 3D head pose, the full head motion is recovered by projecting a cylindrical head model onto the face image. It is possible to recover the head pose regardless of light variations and self-occlusion by updating the template dynamically. In the phase of synthesizing the facial expression, the variations of the major facial feature points of the face images are tracked by using optical flow and the variations are retargeted to the 3D face model. At the same time, we exploit the RBF (Radial Basis Function) to deform the local area of the face model around the major feature points. Consequently, facial expression synthesis is done by directly tracking the variations of the major feature points and indirectly estimating the variations of the regional feature points. From the experiments, we can prove that the proposed vision-based facial expression cloning method automatically estimates the 3D head pose and produces realistic 3D facial expressions in real time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.