• Title/Summary/Keyword: Model-based fuzzy controller

Search Result 377, Processing Time 0.03 seconds

Optimal Intelligent Digital Redesign for a Class of Fuzzy-Model-Based Controllers

  • Chang-wook;Joo, Young-hoon;Park, Jin-bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.113-118
    • /
    • 2001
  • In this paper, we develop an optimal intelligent digital redesign method for a class of fuzzy-model-based controllers, effective for stabilization of continuous-time complex nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to extend the results of the classical digital redesign technique to complex nonlinear systems. Unlike the conventional intelligent digital redesign technique reported in the literature, the proposed method utilized the recently developed LMI optimization technique to obtain a digitally redesigned fuzzy-model-based controller. Precisely speaking, the intelligent digital redesign problem is converted to an equivalent optimization problem, and the LMI optimization method is used to find the digitally redesigned fuzzy-model-based controller. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

Design of Adaptive Fuzzy Control for High Performance of PMSM Drive (PMSM 드라이브의 고성능 제어를 위한 적응 퍼지제어기의 설계)

  • 정동화;이홍균;이정철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

Design of the flexible switching controller for small PWR core power control with the multi-model

  • Zeng, Wenjie;Jiang, Qingfeng;Du, Shangmian;Hui, Tianyu;Liu, Yinuo;Li, Sha
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.851-859
    • /
    • 2021
  • Small PWR can be used for power generation and heating. Considering that small PWR has the characteristics of flexible operating conditions and complex operating environment, the controller designed based on single power level is difficult to achieve the ideal control of small PWR in the whole range of core power range. To solve this problem, a flexible switching controller based on fuzzy controller and LQG/LTR controller is designed. Firstly, a core fuzzy multi-model suitable for full power range is established. Then, T-S fuzzy rules are designed to realize the flexible switching between fuzzy controller and LQG/LTR controller. Finally, based on the core power feedback principle, the core flexible switching control system of small PWR is established and simulated. The results show that the flexible switching controller can effectively control the core power of small PWR and the control effect has the advantages of both fuzzy controller and LQG/LTR controller.

Design of Switching-Type Fuzzy-Model-Based Controller for the Duffing System (Duffing 시스템의 스위칭 모드 퍼지 모델 기반 제어기의 설계)

  • Kim, Joo-Won;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.15-17
    • /
    • 2001
  • This paper deals with a design problem of a switching-type fuzzy-model-based controller for a nonlinear system. Takagi-Sugeno(TS) fuzzy model and duffing forced-oscillation system are employed in designing the switching-type fuzzy controller. Finally, we analyze the stability of the global system controlled by the proposed controller.

  • PDF

A fuzzy-model-based controller for a helicopter system with 2 degree-of-freedom in motion (2 자유도 헬리콥터 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1949-1951
    • /
    • 2001
  • This paper deals with the control of a nonlinear experimental helicopter system by using the fuzzy-model-based control approach. The fuzzy model of the experimental helicopter system is constructed from the original nonlinear dynamic equations in the form of an affine Takagi-Sugeno (TS) fuzzy system. In order to design a feasible switching-type fuzzy-model-based controller, the TS fuzzy system is converted to a set of uncertain linear systems, which is used as a basic framework to synthesize the fuzzy-model-based controller.

  • PDF

The Fuzzy Model-Based-Controller for the Control of SISO Nonlinear System (SISO 비선형 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.528-530
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers. this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. Furthermore, stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. A simulation is included for the control of the Duffing forced-oscillation system, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Design of Fuzzy Model Based Controller for Uncertain Nonlinear Systems

  • Wook Chang;Joo, Young-Hoon;Park, Jin-Bae;Guanrong Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.185-189
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers, this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. The stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. Furthermore, the proposed method can be applied to partially known uncertain nonlinear systems. A numerical simulation is performed for the control of an inverted pendulum, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Digital control of inverted pendulum by using intelligent digital redesign (지능형 디지탈 재설계를 이용한 도립 진자의 디지탈 제어)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2280-2282
    • /
    • 2000
  • This paper presents a simple and new digital redesign algorithm for fussy-model-based controllers. In the first stage, a continuous-time TS fuzzy model is constructed for a given continuous-time nonlinear system and a corresponding continuous-time fuzzy-model-based controller is established based on the existing controller synthesis algorithms. In the second stage, the continuous-time fuzzy-model-based controller is converted to equivalent discrete-time fuzzy-model-based controller, aiming at maintaining the property of the analogue controlled system, which are called intelligent digital redesign. Finally, the proposed method is applied to the digital control of inverted pendulum system to shows the effectiveness and the feasibility of the method.

  • PDF

A TSK Fuzzy Controller for Underwater Robots

  • Kim, Su-Jin;Oh, Kab-Suk;Lee, Won-Chang;Kang, Geun-Taek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.320-325
    • /
    • 1998
  • Underwater robotic vehicles (URVs) have been an important tool for various underwater tasks because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system becomes one of the most critical subsytems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. In this paper a new type of fuzzy model-based controller based on Takagi-Sugeno-Kang fuzzy model is designed and applied to the control of of an underwater robotic vehicle. The proposed fuzzy controller : 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule ; 2) can guarantee the stability of the closed-loop fuzzy system ; 3) is relatively easy to implement. Its good performance as well as its robustness to the change of parameters have been shown and compared with the re ults of conventional linear controller by simulation.

  • PDF

Fuzzy Controller by Using Digital Redesign (디지털 재설계를 이용한 퍼지제어기)

  • Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.630-632
    • /
    • 1999
  • In this paper, we develop intelligent digitally redesigned PAM and PWM fuzzy controllers for nonlinear systems. Takagi-Sugeno fuzzy model is used to model the nonlinear systems and a continuous-time fuzzy-model-based controller is designed based on the extended parallel-distributed-compensation method. The digital controllers are determined from existing analogue controllers. The proposed method provides an accurate and effective method for digital control of continuous·time nonlinear systems and enables us to efficiently implement a digital controller via pre-determined continuous-time TS fuzzy-model-based controller. We have applied the proposed method to the balancing problem of the inverted pendulum to show the effectiveness and feasibility of the method.

  • PDF