• Title/Summary/Keyword: Model-based Design

Search Result 12,163, Processing Time 0.04 seconds

Generation and Transmission of Progressive Solid Models U sing Cellular Topology (셀룰러 토폴로지를 이용한 프로그레시브 솔리드 모델 생성 및 전송)

  • Lee, J.Y.;Lee, J.H.;Kim, H.;Kim, H.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.122-132
    • /
    • 2004
  • Progressive mesh representation and generation have become one of the most important issues in network-based computer graphics. However, current researches are mostly focused on triangular mesh models. On the other hand, solid models are widely used in industry and are applied to advanced applications such as product design and virtual assembly. Moreover, as the demand to share and transmit these solid models over the network is emerging, the generation and the transmission of progressive solid models depending on specific engineering needs and purpose are essential. In this paper, we present a Cellular Topology-based approach to generating and transmitting progressive solid models from a feature-based solid model for internet-based design and collaboration. The proposed approach introduces a new scheme for storing and transmitting solid models over the network. The Cellular Topology (CT) approach makes it possible to effectively generate progressive solid models and to efficiently transmit the models over the network with compact model size. Thus, an arbitrary solid model SM designed by a set of design features is stored as a much coarser solid model SM/sup 0/ together with a sequence of n detail records that indicate how to incrementally refine SM/sup 0/ exactly back into the original solid model SM = SM/sup 0/.

Design of a Model Based Controller with Safety (안전성을 고려한 모델 기반 제어기 설계)

  • Shin, Bum-Sik;Park, Jeong-Hoon;Moon, Chan-Woo;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.9-14
    • /
    • 2013
  • Model based design method reduces product development period and increases system software safety. In this paper, a BLDC motor controller based on model based design method is designed with Simulink and implemented with auto generated code which is written in C language. To retain the safety of software, this model is implemented according to MISRA AC SLSF guide. The validity of the implemented controller is verified with a real position control experiment, and execution times of each control loops are measured to compare the system performance of the conventional design and the model based design.

Design of a System Model for the Role-Based Access Control for Web-Based Applications (웹 기반 응용을 위한 직물 기반 접근 제어 시스템 모델 설계)

  • Lee Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.63-69
    • /
    • 2004
  • The purpose of this paper is to design a system model which is needed for integrating the secure role-based access control model into web-based application systems. For this purpose, firstly, the specific system architecture model using a user-pull method is presented. This model can be used as a design paradigm. Secondly, the practical system working model is proposed. which specifies the mechanism that performs role-based access control in the environment of web-based application systems. Finally, the comparison and analysis is shown in which the merits with the proposed system model is presented.

  • PDF

Feature-based Similarity Assessment for Re-using CAD Models (CAD 모델 재사용을 위한 특징형상기반 유사도 측정에 관한 연구)

  • Park, Byoung-Keon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • Similarity assessment of a CAD model is one of important issues from the aspect of model re-using. In real practice, many new mechanical parts are designed by modifying existing ones. The reuse of part enables to save design time and efforts for the designers. Design time would be further reduced if there were an efficient way to search for existing similar designs. This paper proposes an efficient algorithm of similarity assessment for mechanical part model with design history embedded within the CAD model. Since it is possible to retrieve the design history and detailed-feature information using CAD API, we can obtain an accurate and reliable assessment result. For our purpose, our assessment algorithm can be divided by two: (1) we select suitable parts by comparing MSG (Model Signature Graph) extracted from a base feature of the required model; (2) detailed-features' similarities are assessed with their own attributes and reference structures. In addition, we also propose a indexing method for managing a model database in the last part of this article.

Harmonization of IFC 3D Building Model Standards and ISO/STEP AP202 Drawing Standards for 2D Shape Data Representation (IFC 3차원 건축모델표준과 ISO/STEP AP202도면표준의 2차원 형상정보 연계방안)

  • Won, Ji-Sun;Lim, Kyoung-Il;Kim, Seong-Sig
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.429-439
    • /
    • 2006
  • The purpose of this study is to support the integration from current 2D drawing-based design to future 3D model-based design. In this paper, an important theme is the combination between the STEP-based 2D drawing standards (i.e., AP202) and the IFC-based 3D building model standards. To achieve the purpose, two methodologies are proposed as follows: the development of IFC extension model for the 2D shape data representation by harmonizing ISO/STEP AP202; and the development of mapping solution between IFC 2D extension model and KOSDIC by constructing the exchange scenario for 2D shape data representation. It is expected that the proposed IFC2X2 2D extension model and mapping solution will offer the basis of development of the integrated standards model in AEC industry.

Design of Grinding Datab ase Based on the Frame Model (후레임 모델에의한 연삭가공용 데이터베이스의 설계)

  • 김건희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.102-106
    • /
    • 1997
  • Grinding has difficulty in satisfying the qualitative knowledge based on the skilled expert as well as quantitative data for all user. Design of grinding database is based on the frame-based model for utilizing the empirical and qualitative knowledge. Inthis paper, basic strategy to develop the grinding database by frame-based model, which is strongly dependent upon experience and intuition, frame-base model, which is strongly dependent upon experience and intuition, is described. Design of grinding database is based on the frame-based model for utilizing the ambiguous knowledge and inference is accomplised by the object-oriented paradigm system.

  • PDF

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.

The Development of a Design Thinking-based Capstone Design Instructional Model for Pre-service Teachers (예비교사를 위한 디자인싱킹 기반 캡스톤디자인 교수설계모형 개발)

  • Nam, Changwoo;Shin, Dongmin
    • Journal of Creative Information Culture
    • /
    • v.7 no.3
    • /
    • pp.129-144
    • /
    • 2021
  • This study was conducted for the purpose of developing a design thinking-based capstone design instructional model for pre-service teachers. Through the analysis of literature related to learner-centered instruction, design thinking and capstone design instructional design principles and instructional models for pre-service teacher education were discovered, and core elements were derived. Based on the core elements derived through literature analysis, the capstone design instructional design model and teaching and learning model based on design thinking for pre-service teachers were developed. The developed model conducted a total of three Delphi surveys including expert validation for 6 experts related to education including design thinking, capstone design, was revised, supplemented, and the final draft was confirmed. The final results of this study contain the overall contents of the instructional design, instructor's activities in detailed steps, and guidelines for learners' activities.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

Development of Field Programmable Gate Array-based Reactor Trip Functions Using Systems Engineering Approach

  • Jung, Jaecheon;Ahmed, Ibrahim
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1047-1057
    • /
    • 2016
  • Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.