• 제목/요약/키워드: Model-based Decomposition

검색결과 443건 처리시간 0.025초

NUMERICAL ANALYSIS OF A SO3 PACKED COLUMN DECOMPOSITION REACTOR WITH ALLOY RA 330 STRUCTURAL MATERIAL FOR NUCLEAR HYDROGEN PRODUCTION USING THE SULFUR- IODINE PROCESS

  • Choi, Jae-Hyuk;Tak, Nam-Il;Shin, Young-Joon;Kim, Chan-Soo;Lee, Ki-Young
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1275-1284
    • /
    • 2009
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed using the computational fluid dynamics (CFD) code CFX 11. The use of a directly heated decomposition reactor in conjunction with a very high temperature reactor (VHTR) allows for higher decomposition reactor operating temperatures. However, the high temperatures and strongly corrosive operating conditions associated with $SO_3$ decomposition present challenges for the structural materials of decomposition reactors. In order to resolve these problems, we have designed a directly heated $SO_3$ decomposer using RA330 alloy as a structural material and have performed a CFD analysis of the design based on the finite rate chemistry model. The CFD results show the maximum temperature of the structural material could be maintained sufficiently below 1073 K, which is considered the target temperature for RA 330. The CFD simulations also indicated good performance in terms of $SO_3$ decomposition for the design parameters of the present study.

분해 모델링 기법을 이용한 절삭 시뮬레이션 시스템 개발 (Development of the cutting simulation system with decomposition Algorithm.)

  • 김용현;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 2004
  • This paper develops an octree-based algorithm for machining simulation. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. The supersampling method is the most common form of antialiasing and is typically used with polygon mesh rendering in computer graphics. The supersampling technique is being used to advance the efficiency of the octree algorithm..

  • PDF

A Text Similarity Measurement Method Based on Singular Value Decomposition and Semantic Relevance

  • Li, Xu;Yao, Chunlong;Fan, Fenglong;Yu, Xiaoqiang
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.863-875
    • /
    • 2017
  • The traditional text similarity measurement methods based on word frequency vector ignore the semantic relationships between words, which has become the obstacle to text similarity calculation, together with the high-dimensionality and sparsity of document vector. To address the problems, the improved singular value decomposition is used to reduce dimensionality and remove noises of the text representation model. The optimal number of singular values is analyzed and the semantic relevance between words can be calculated in constructed semantic space. An inverted index construction algorithm and the similarity definitions between vectors are proposed to calculate the similarity between two documents on the semantic level. The experimental results on benchmark corpus demonstrate that the proposed method promotes the evaluation metrics of F-measure.

A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD FOR A DISCONTINUOUS GALERKIN METHOD: A NUMERICAL STUDY

  • Eun-Hee Park
    • Korean Journal of Mathematics
    • /
    • 제31권4호
    • /
    • pp.419-431
    • /
    • 2023
  • In this paper, we propose an iterative method for a symmetric interior penalty Galerkin method for heterogeneous elliptic problems. The iterative method consists mainly of two parts based on a non-overlapping domain decomposition approach. One is an intermediate preconditioner constructed by understanding the properties of the discontinuous finite element functions and the other is a preconditioning related to the dual-primal finite element tearing and interconnecting (FETI-DP) methodology. Numerical results for the proposed method are presented, which demonstrate the performance of the iterative method in terms of various parameters associated with the elliptic model problem, the finite element discretization, and non-overlapping subdomain decomposition.

제약조건을 갖는 다변수 모델 예측 제어기의 비선형 보일러 시스템에 대한 적용 (Constrained multivariable model based predictive control application to nonlinear boiler system)

  • 손원기;이명의;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.160-163
    • /
    • 1996
  • This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

An Application of Tucker Decomposition for Detecting Epilepsy EEG signals

  • Thieu, Thao Nguyen;Yang, Hyung-Jeong
    • Journal of Multimedia Information System
    • /
    • 제2권2호
    • /
    • pp.215-222
    • /
    • 2015
  • Epileptic Seizure is a popular brain disease in the world. It affects the nervous system and the activities of brain function that make a person who has seizure signs cannot control and predict his actions. Based on the Electroencephalography (EEG) signals which are recorded from human or animal brains, the scientists use many methods to detect and recognize the abnormal activities of brain. Tucker model is investigated to solve this problem. Tucker decomposition is known as a higher-order form of Singular Value Decomposition (SVD), a well-known algorithm for decomposing a matric. It is widely used to extract good features of a tensor. After decomposing, the result of Tucker decomposition is a core tensor and some factor matrices along each mode. This core tensor contains a number of the best information of original data. In this paper, we used Tucker decomposition as a way to obtain good features. Training data is primarily applied into the core tensor and the remained matrices will be combined with the test data to build the Tucker base that is used for testing. Using core tensor makes the process simpler and obtains higher accuracies.

Pseudoinverse Matrix Decomposition Based Incremental Extreme Learning Machine with Growth of Hidden Nodes

  • Kassani, Peyman Hosseinzadeh;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.125-130
    • /
    • 2016
  • The proposal of this study is a fast version of the conventional extreme learning machine (ELM), called pseudoinverse matrix decomposition based incremental ELM (PDI-ELM). One of the main problems in ELM is to determine the number of hidden nodes. In this study, the number of hidden nodes is automatically determined. The proposed model is an incremental version of ELM which adds neurons with the goal of minimization the error of the ELM network. To speed up the model the information of pseudoinverse from previous step is taken into account in the current iteration. To show the ability of the PDI-ELM, it is applied to few benchmark classification datasets in the University of California Irvine (UCI) repository. Compared to ELM learner and two other versions of incremental ELM, the proposed PDI-ELM is faster.

Development of reduced-order thermal stratification model for upper plenum of a lead-bismuth fast reactor based on CFD

  • Tao Yang;Pengcheng Zhao;Yanan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2835-2843
    • /
    • 2023
  • After an emergency shutdown of a lead-bismuth fast reactor, thermal stratification occurs in the upper Plenum, which negatively impacts the integrity of the reactor structure and the residual heat removal capacity of natural circulation flow. The research on thermal stratification of reactors has mainly been conducted using an experimental method, a system program, and computational fluid dynamics (CFD). However, the equipment required for the experimental method is expensive, accuracy of the system program is unpredictable, and resources and time required for the CFD approach are extensive. To overcome the defects of thermal stratification analysis, a high-precision full-order thermal stratification model based on CFD technology is prepared in this study. Furthermore, a reduced-order model has been developed by combining proper orthogonal decomposition (POD) with Galerkin projection. A comparative analysis of thermal stratification with the proposed full-order model reveals that the reduced-order thermal stratification model can well simulate the temperature distribution in the upper plenum and rapidly elucidate the thermal stratification interface characteristics during the lead-bismuth fast reactor accident. Overall, this study provides an analytical tool for determining the thermal stratification mechanism and reducing thermal stratification.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.

외연적 시간적분법 활용 동적 구조해석 속도 향상을 위한 적합직교분해 기반 침습적 차수축소모델 적용 연구 (Proper Orthogonal Decomposition Based Intrusive Reduced Order Models to Accelerate Computational Speed of Dynamic Analyses of Structures Using Explicit Time Integration Methods)

  • 황영광;김명일
    • 한국전산구조공학회논문집
    • /
    • 제37권1호
    • /
    • pp.9-16
    • /
    • 2024
  • 일반적으로 적합직교분해(proper orthogonal decomposition, POD) 기반의 침습적(intrusive) 차수축소모델(reduced order model, ROM)을 활용하면 구조 시스템의 전체 자유도를 크게 줄이고 외연적 시간 적분법에서 해의 안정성을 만족하는 임계 시간 간격을 증가시킬 수 있다. 따라서 본 연구에서는 POD-ROM을 활용하여 Voronoi-cell 격자 요소로 이산화된 구조 시스템의 축소와 이에 따른 외연적 시간 적분법의 임계 시간 간격 및 해석 정확도 변화를 살펴보았다. 또한 지진하중과 같은 불규칙한 하중 이력을 받는 구조물 응답 해석에 POD-ROM을 적용하였다. 해석 결과 ROM을 통해 해의 정확도를 충분히 확보하면서 연산 시간을 크게 단축할 수 있음을 확인하였다. 또한 POD-ROM과 VCLM의 연계 방안의 적절성을 확인하였다. 향후 해당 연구는 고정밀 대용량 동적 구조해석의 실용성을 높이고, 설계 변수에 따른 구조물 동적 거동의 실시간 예측을 위한 기반 연구로 활용될 수 있다.