• Title/Summary/Keyword: Model-Based Testing

Search Result 1,595, Processing Time 0.03 seconds

A Study on the Development of Testing Models and Its Design System for the Comprehensive Performance Test of the Substation Automation System (변전자동화 종합 성능시험을 위한 시험모델 및 설계시스템 개발에 관한 연구)

  • Lee, Nam-Ho;Jang, Byung-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.63-71
    • /
    • 2011
  • Due to the rapid development of digital technnology and informantion communication, in the IEC 61850 based substation automation system, the innovative paradigm shift is expected and also required in many substation-related jobs, especially in the device function test area Accordingly a common testing model which can simplify the complex contents of the SAS performance test performed by test engineers has been identified, that can overcome limitations of engineers' own testing knowledge and experience. Testing models and its design system for the comprehensive performance test of the Substation Automation System is developed and the result of the study is reported in this paper.

Development of Reliability Simulator for Electronic Components (전자부품 통합 신뢰성 Simulator 개발)

  • Kim, Wan-Doo;Lee, Seung-Woo;Han, Seung-Woo;Osterman, Michael
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1749-1753
    • /
    • 2007
  • The reliability, that is Long-Term Quality, require an approaching different from Short-Term Quality which is used before. As the electronic components are able to be easily normalized on the reliability testing, various testing standards are used. In this study, we proposed two reliability simulator that is PoF(Physics of Failure)-based and failure rate models-based. PoF-based simulator is introduced based on CalceEP program that is created by University of Maryland. This simulator can be modified by user interface of properties and PoF models and operated on stand alone system. Failure rate models-based simulator introduced according to analyzing reliability prediction documents. Also, unified database including failure data models is built from existing MIL-HDBK-217F N2, PRISM, and Bellcore, and web-based simulator is developed. The developed reliability simulator will service of the PoF model, properties, failure rate model accumulated and its data by web and internet.

  • PDF

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Improved Exponential Software Reliability Model Based on NHPP with the Uncertainty of Operating Environments

  • Song, Kwang Yoon;Chang, In Hong
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.249-257
    • /
    • 2017
  • The main focus when developing software is to improve the reliability and stability of a software system. We are enjoying a very comfortable life thanks to modern civilization, however, comfort is not guaranteed to us. Once software systems are introduced, the software systems used in the field environments are the same as or close to those used in the development-testing environment; however, the systems may be used in many different locations. Development of software system is a difficult and complex process. Generally, existing software reliability models are applied to software testing data and then used to make predictions on the software failures and reliability in the field. In this paper, we present an improved exponential NHPP software reliability model in different development environments, and examine the goodness-of-fit of improved exponential model and other model based on two datasets. The results show that the proposed model fits significantly better than other NHPP software reliability model.

Performance Evaluation of Software Task Processing Based on Markovian Perfect Debugging Model

  • Lee, Chong-Hyung;Jang, Kyu-Beam;Park, Dong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.997-1006
    • /
    • 2008
  • This paper proposes a new model by combining an infinite-server queueing model for multi-task processing software system with a perfect debugging model based on Markov process with two types of faults suggested by Lee et al. (2001). We apply this model for module and integration testing in the testing process. Also, we compute several measure, such as the expected number of tasks whose processes can be completed and the task completion probability are investigated under the proposed model.

The Development of Interoperability Tester for the IEC 61850 based on TTCN-3 (TTCN-3 적합성 시험 언어를 이용한 IEC61850 상호 연동성 시험기 개발)

  • Song, Byung-Kwen;Lee, Suk-Hee
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.210-218
    • /
    • 2010
  • TTCN-3(Testing & Test Control Notation Version 3) is the international standard testing language defined by ETSI in 2001. TTCN-3 is generally used for protocol conformance test, but it is also possible to be applied to the platform and API tests based on CORBA. Moreover, it can be also applied to the various testings such as interworking testing, repetition testing, platform testing, etc. IEC 61850 is the protocol proposed for SAS(Substation Automation System) of SCADA(Supervisory Control And Data Acquisition) system. In this paper, a IEC 61850 interoperability Tester based TTCN-3 is developed under the Window environment. IEC 61850 Server Simulator of Linux operating system is used as SUT(System Under Test). Conformance testing items in this paper are the Positive test case_Srv5 of "Server, Logical device, Logical node, and data model" in the testing group of "IEC 61850 - Part10" document.

Independent Testing in Marshall and Olkin's Bivariate Exponential Model Using Fractional Bayes Factor Under Bivariate Type I Censorship

  • Cho, Kil-Ho;Cho, Jang-Sik;Choi, Seung-Bae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1391-1396
    • /
    • 2008
  • In this paper, we consider two components system which the lifetimes have Marshall and Olkin's bivariate exponential model with bivariate type I censored data. We propose a Bayesian independent test procedure for above model using fractional Bayes factor method by O'Hagan based on improper prior distributions. And we compute the fractional Bayes factor and the posterior probabilities for the hypotheses, respectively. Also we select a hypothesis which has the largest posterior probability. Finally a numerical example is given to illustrate our Bayesian testing procedure.

  • PDF

An Efficient Ultrasonic SAFT Imaging for Pulse-Echo Immersion Testing

  • Hu, Hongwei;Jeong, Hyunjo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.84-90
    • /
    • 2017
  • An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

Test of Linearity in Panel Regression Model (패널회귀모형에서 선형성검정)

  • 송석헌;최충돈
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.351-364
    • /
    • 2003
  • This paper derives Lagrange multiplier tests based on Double-Length Artificial Regression and Outer-Product Gradient for testing linear and log-linear panel regressions against Box-Cox alternatives. The proposed DLR based LM tests are easy to implement in an error component model. From the Monte Carlo study, the DLR based LM tests are recommended for testing functiona forms.