• Title/Summary/Keyword: Model-Based Systems Engineering

Search Result 5,418, Processing Time 0.039 seconds

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF

Stepwise Volume Decomposition Considering Design Feature Recognition (설계 특징형상 인식을 고려한 단계적 볼륨 분해)

  • Kim, Byung Chul;Kim, Ikjune;Han, Soonhung;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.71-82
    • /
    • 2013
  • To modify product design easily, modern CAD systems adopt the feature-based model as their primary representation. On the other hand, the boundary representation (B-rep) model is used as their secondary representation. IGES and STEP AP203 edition 1 are the representative standard formats for the exchange of CAD files. Unfortunately, both of them only support the B-rep model. As a result, feature data are lost during the CAD file exchange based on these standards. Loss of feature data causes the difficulty of CAD model modification and prevents the transfer of design intent. To resolve this problem, a tool for recognizing design features from a B-rep model and then reconstructing a feature-based model with the recognized features should be developed. As the first part of this research, this paper presents a method for decomposing a B-rep model into simple volumes suitable for design feature recognition. The results of experiments with a prototype system are analyzed. From the analysis, future research issues are suggested.

Model-based Clustering of DOA Data Using von Mises Mixture Model for Sound Source Localization

  • Dinh, Quang Nguyen;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • In this paper, we propose a probabilistic framework for model-based clustering of direction of arrival (DOA) data to obtain stable sound source localization (SSL) estimates. Model-based clustering has been shown capable of handling highly overlapped and noisy datasets, such as those involved in DOA detection. Although the Gaussian mixture model is commonly used for model-based clustering, we propose use of the von Mises mixture model as more befitting circular DOA data than a Gaussian distribution. The EM framework for the von Mises mixture model in a unit hyper sphere is degenerated for the 2D case and used as such in the proposed method. We also use a histogram of the dataset to initialize the number of clusters and the initial values of parameters, thereby saving calculation time and improving the efficiency. Experiments using simulated and real-world datasets demonstrate the performance of the proposed method.

Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems (장주기모델로 구성된 다개체시스템의 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.508-512
    • /
    • 2016
  • This paper discusses a Takagi-Sugeno (T-S) fuzzy controller design problem for a phugoid model-based multi-agent system. The error between the state of a phugoid model and a reference is defined to construct a multi-agent system model. A T-S fuzzy model of the multi-agent system is built by introducing a nonlinear controller. A fuzzy controller is then designed to stabilize the T-S fuzzy model, where the synthesis condition is represented in terms of linear matrix inequalities.

A Systems Engineering Approach to Implementing Hardware Cybersecurity Controls for Non-Safety Data Network

  • Ibrahim, Ahmad Salah;Jung, Jaecheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-114
    • /
    • 2016
  • A model-based systems engineering (MBSE) approach to implementing hardware-based network cybersecurity controls for APR1400 non-safety data network is presented in this work. The proposed design was developed by implementing packet filtering and deep packet inspection functions to control the unauthorized traffic and malicious contents. Denial-of-Service (DoS) attack was considered as a potential cybersecurity issue that may threaten the data availability and integrity of DCS gateway servers. Logical design architecture was developed to simulate the behavior of functions flow. HDL-based physical architecture was modelled and simulated using Xilinx ISE software to verify the design functionality. For effective modelling process, enhanced function flow block diagrams (EFFBDs) and schematic design based on FPGA technology were together developed and simulated to verify the performance and functional requirements of network security controls. Both logical and physical design architectures verified that hardware-based cybersecurity controls are capable to maintain the data availability and integrity. Further works focus on implementing the schematic design to an FPGA platform to accomplish the design verification and validation processes.

Model-based Analysis to Improve the Safety of Urban Logistics System Using Vacant Space (유휴공간을 활용한 도시물류 시스템의 안전성 향상을 위한 모델기반 분석)

  • Park, Jae-Min;Kim, Joo-Uk;Kim, Young-Min
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The growth of the online market is accelerating due to the development of technology and the pandemic era. The delivery service through the courier must be used to deliver the ordered goods to the customer through the online market. With the growth of the online market, the logistics market for delivery is also growing. The traffic and environmental problems are emerging as social issues. Urban logistics technology using underground space based on the urban railway developed to improve logistics efficiency in a metropolitan area and a new alternative to environmental problems. This study proposed a plan to secure system safety through safety analysis based on operational concept definition and scenario analysis by applying model-based perspective analysis to the system under development.

Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method

  • Park Keon-Jun;Lee Young-Il;Oh Sung-Kwun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.253-258
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuzzy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

Development of 3D Crop Segmentation Model in Open-field Based on Supervised Machine Learning Algorithm (지도학습 알고리즘 기반 3D 노지 작물 구분 모델 개발)

  • Jeong, Young-Joon;Lee, Jong-Hyuk;Lee, Sang-Ik;Oh, Bu-Yeong;Ahmed, Fawzy;Seo, Byung-Hun;Kim, Dong-Su;Seo, Ye-Jin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.15-26
    • /
    • 2022
  • 3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.

Automatic Train Control (ATC) System Development through Application of Reverse and Re-Systems Engineering Process (역공학 및 재공학 시스템엔지니어링 프로세스 적용을 통한 무인열차자동제어시스템 개발)

  • 이중윤;박영원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.836-843
    • /
    • 2003
  • The automatic train control (ATC) system development project for the Automated Guideway Transit (AGT) system has high technical risk because the system is unmanned train control system using wireless technology which was unprecedented in train control industry of Korea. To overcome the technical risk during concept design phase of the ATC system development project, the integrated product team(IPT) carried out a reverse and reengineering process using a systems engineering design model. The generic systems engineering process is incorporated in the both reverse and reengineering process. As a result of the systems engineering effort, the IPT has built top layer systems engineering design model of the ATC subsystem. The purpose of this paper is to deliver the reverse and reengineering process which was used to develop the systems engineering design model of ATC system using a computer aided systems engineering tool. This study also shows that the model based reverse and reengineering process can reduce the technical risk by identifying the differences of requirement, functional and physical architecture between a reference system and a target system.

Functional Safety and Model-Based Systems Engineering - focusing on ISO 26262/DO-178C (기능 안전과 모델기반 시스템엔지니어링 - ISO 26262/DO-178C 중심으로)

  • Park, Joongyong;Paek, Seung-Kil
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • Recently, the ratio of electrical part and embedded software has grown in automotive industry. ISO 26262, 'Road Vehicles - Functional Safety', was published to guide development of automotive electrical and electronic part in 2011. This paper describes definition of functional safety and analyzes ISO 26262. The comparison of ISO 26262 and DO-178C is made, then difference between them is identified. DO-178C provides guidance for the production of software for airborne system and equipment. The core of DO-178C is a relatively minor update to the previous DO-178B, however, the big changes are captured in the supplemented documents such as DO-331, 'Model-Based Development and Verification Supplement to DO-178C and DO-278A'. Model-based design is important to develop automotive and aircraft meeting the guidelines of ISO 26262 and DO-178C. In this paper, the sample case of applying MBSE(Model-Based Systems Engineering) to AVCS(Active Vibration Control System) software development is discussed.