• Title/Summary/Keyword: Model pile

Search Result 717, Processing Time 0.025 seconds

Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles

  • Xing, Haofeng;Zhang, Hao;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.389-397
    • /
    • 2021
  • Pile foundation is a typical form of bridge foundation and viaduct, and large-diameter rock-socketed piles are typically adopted in bridges with long span or high piers. To investigate the effect of a mountain slope with a deep overburden layer on the bearing characteristics of large-diameter rock-socketed piles, four centrifuge model tests of single piles on different slopes (0°, 15°, 30° and 45°) were carried out to investigate the effect of slope on the bearing characteristics of piles. In addition, three pile group tests with different slope (0°, 30° and 45°) were also performed to explore the effect of slope on the bearing characteristics of the pile group. The results of the single pile tests indicate that the slope with a deep overburden layer not only accelerates the drag force of the pile with the increasing slope, but also causes the bending moment to move down owing to the increase in the unsymmetrical pressure around the pile. As the slope increases from 0° to 45°, the drag force of the pile is significantly enlarged and the axial force of the pile reduces to beyond 12%. The position of the maximum bending moment of the pile shifts downward, while the magnitude becomes larger. Meanwhile, the slope results in the reduction in the shaft resistance of the pile, and the maximum value at the front side of the pile is 3.98% less than at its rear side at a 45° slope. The load-sharing ratio of the tip resistance of the pile is increased from 5.49% to 12.02%. The results of the pile group tests show that the increase in the slope enhances the uneven distribution of the pile top reaction and yields a larger bending moment and different settlements on the pile cap, which might cause safety issues to bridge structures.

Model Tests of Pile Groups in Sand (실내모형실험을 통한 군말뚝기초의 거동분석)

  • 정상훈;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.193-205
    • /
    • 2001
  • In this study the behavior of pile groups is investigated experimentally. Special attention is given to the load transfer characteristics of pile groups and to the evaluation of the group effects under vertical and horizontal loadings. In the laboratory experiments, vertical and lateral loadings were imposed on model piles in sand. Model piles made of PVC embedded in Joomoonjin sand were used in this study. Pile arrangements($2\times2,\; 3\times3$) and pile spacings(2.5D, 5.OD, 7.5D) were considered. Load-transfer curves(t-z, q-z and p-y curves), load-deflection curves and group interaction factors were obtained from the experimental results. The group interaction factors under both vertical and horizontal loadings were proposed for the cases of $2\times2\; and\; 3\times3$ pile groups with varying ratios of pile spacings. p-multipliers in this study were found for the individual piles in $2\times2\; and\; 3\times3$ pile groups.

  • PDF

Analysis of the Negative Skin Friction Acting on a Model Pile (모형말뚝에 작용하는 부마찰력 거동 해석)

  • Lee, Song;Lee, Kyu-Hwan;Yi, Chang-Tok
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.81-93
    • /
    • 1999
  • This paper investigated the negative skin friction acting on the model piles driven in the cylindrical chamber filled with remolded marine clay. In model tests, three load cells were installed on the model piles consisting of three parts to measure the negative skin friction forces independently. Pore pressures and ground movements were monitored throughout the period of investigation. Finite element analysis was used to simulate the behavior of a model pile. This paper describes the comparison of the behavior of negative skin friction on the single model pile with a numerical analysis by CRISP.

  • PDF

Analysis of Load-Settlement Behaviour Characteristics of Granular Compaction Piles from the Model Tests (모형실험에 의한 조립토 다짐말뚝의 하중-침하 관련 거동특성 분석)

  • Kim, Hong-Taek;Kang, Yun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.33-45
    • /
    • 2004
  • In the present study, more systematic laboratory model tests under various conditions are carried out to investigate load-sharing characteristics among the granular pile and adjacent soils and bearing capacity characteristics with different pile lengths. Further to evaluate effects of both a loading area and a spacing of pile installation on the bearing capacity and bearing capacity characteristics of each pile in group, model test results are also analyzed for the purpose of an efficient design of granular compaction piles. From the analysis of the model test results, it is found that the ultimate capacity of granular compaction group piles increases with a decrease in the installation distance among granular piles. It is also found that the dominant failure mode of the granular compaction piles is bulging failure. It is further realized that the length of a granular pile could not significantly affect on the ultimate granular pile capacity.

  • PDF

Effect of Pile Head Constraint on Lateral Behavior of Single Rigid Pile in Two-Layered Sand Soil (2개층 사질토지반에서 단일 강성말뚝의 수평거동에 대한 두부 구속영향)

  • 김영수;서인식;김병탁;이상웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.217-224
    • /
    • 1999
  • This Paper shows the results of a series of model tests on the behavior of single rigid Pile, which subjected to lateral load, in non-homogeneous Nak-Dong River sands, consisted of two layers, upper and lower layers. The purpose of the present paper is to investigate the effect of ratio of lower layer thickness to embedded pile length ratio of soil modules of upper to lower layer (E$\sub$h1//E$\sub$h2/) and pile head constraint condition on the characteristics of lateral behavior of single pile. These effects can be quantified only by the results of model tests. As a model test result, in non-homogeneous sand, it shows that the lateral behavior depends upon the ratio of soil modules of upper to lower layer more than other factors. And, in respect of deflection, it was found that the reduction ratio of deflection by pile head fixity is the value of 0.5 and 0.6 for E$\sub$h1//E$\sub$h2/=0.18 and E$\sub$h1//E$\sub$h2/=5.56, respectively. The critical thickness of lower layer on the change of deflection is about 25 - 50% of pile embedded length. Also, in respect of maximum bending moment it was found that the reduction ratio of maximum bending moment by pile head fixity is the value of 0.55 and 0.7 for E$\sub$h1//E$\sub$h2/=0.18 and E$\sub$h1//E$\sub$h2/=5.56, respectively.

  • PDF

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

A Study of Rectangular-shaped Passive Row Piles in Horizontal Sand-ground under Lateral Soil Movement by Model Test (수평모래지반에서 측방변형을 받는 사각형 수동 열말뚝에 관한 실험적 연구)

  • Bae, Jong-Soon;Kwon, Min-Jea
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.23-36
    • /
    • 2008
  • This study describes model tests on instrumented rectangular-shaped passive row piles embedded in horizontal sand-ground undergoing lateral soil movement. We tried to find the property of row piles dependent on the shape of pile, including the position of the pile in row, pile spacing, and soil movement. The results of test are as follows. The lateral earth pressure diagram variously appeared to be triangle, trapezoid and rectangular by shape and position of pile. The outer pile has a larger bending moment than the inner pile in the case of B-type, the inner piles has larger one than outer pile in case of H-type. $R_f$ (the ratio of resistance to lateral soil movement) was found to increase with increasing pile spacing irrespective of pile-shape. Y/L (location of action of lateral resistance force) for $d_s$ (displacement of soil) and $S_h$ (spacing of pile) appeared to be nearly regular position, and H-type is higher than B-type.

Utilization of Waste Concrete as Vertical Drain Material (연직배수재료로 폐콘크리트 활용에 관한 기초연구)

  • 이용수;정하익;김우성;권용완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction (지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링)

  • Oh, Man-Kyo;Kim, Seong-Hwan;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

Evaluation of Ultimate Lateral Resistance for Single Pile Using Strain Wedge Model in Sand (모래지반에서 쐐기모델을 이용한 단말뚝의 극한수평저항력 산정)

  • Kim, Ji-Seong;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.15-22
    • /
    • 2016
  • The magnitude of the lateral resistance that resists the lateral movement of the pile is controlled by the amount of the pile movement and the strength and stiffness of soil. In this paper, we proposed an equation which produces the ultimate lateral resistance of the laterally loaded single pile in sand using the strain wedge model of the soil deformation. The ultimate lateral resistance in strain wedge model is composed of earth pressure of wedge rear, the shear resistance on the side of the wedge, and the frictional resistance between pile and ground. The ultimate lateral resistance determined by the proposed equation was compared with the Ashour, F.D.M., field test in sand. As a result, the error of the proposed equation and Ashour theory, field test, F.D.M were respectively 1.03%, 0.40~3.32%, 6.02%.