• Title/Summary/Keyword: Model pile

Search Result 715, Processing Time 0.029 seconds

잔교식 안벽의 말뚝 두부 내진 보강기법에 따른 수평재하실험 (Lateral Load Test for Various Aseismatic Methods of Pile Heads of Pier Type Quay Walls)

  • 이용재;한진태;장인성;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.98-106
    • /
    • 2003
  • To construct pile-supported wharf structures that must support heavy horizontal loads, both vertical piles and batter piles are used. Batter piles are used to secure the bearing capacity against the horizontal loads. However, past case histories have shown that the heads of batter piles are vulnerable because these heads are subjected to excessive axial loads during earthquakes. Therefore, the aseismatic reinforcement method must be developed to prevent batter pile heads from breaking due to excessive seismic loads. Two different connecting methods of either inserting rubber or ball-bearing between batter pile head and upper plate were proposed to improve the aseismatic efficiency. Three large-scale pile head models(rubber type model, ball-bearing type model, and fixed type model) were manufactured and horizontal loading tests were peformed for these models. The results showed that the force-displacement relationship of the fixed type model was linear, but that of the rubber type model and the ball-bearing type model was bilinear. The increase in the horizontal displacement led to the increase in the horizontal stiffness of the rubber type models and the decrease in that of the ball-bearing type model. Compared with the values for fixed type model, the damping ratios of the rubber type model and the ball-bearing type model increased about 33~185% and 263~269%, respectively.

  • PDF

모형실험을 통한 말뚝지지력의 평가 및 치수효과의 비교분석 (Evaluation of Pile Bearing Capacity and Scale Effect Using Model Pile Test)

  • 이인모;이정학
    • 한국지반공학회지:지반
    • /
    • 제9권4호
    • /
    • pp.37-44
    • /
    • 1993
  • 실내 모형실험을 통하여 모형말뚝 한계깊이의 확인과 기존 선단지지력의 이론식들을 실내모형실험의 선단지지력 실측치와 비교하여 그 차이를 분석하였으며, 말뚝의 직경차이에서 유발되는 지지력의 차이를 비교하고자 실내 모형실험을 실시하였다. 모형지반을 균질한 모래로 조성한 경우와 국내의 현장조건에 가깝게 모형지반을 조성한 모래/풍화토층 경우로 나누어 모형실험을 실시하여 치수효과를 비교하였다. 실험결과, 모형말뚝의 선단지지력은 모래지반의 경우 응력수 준이 높을 때 한계관입깊이 효과를 나타냈으며, 모래1풍화토층의 경우 한계관입깊이를 확연히 확인할 수는 없었으나 그 경향을 보임을 알 수 있었다. 정적지지력 공식으로부터 얻어진 계산치 들은 모형실험에 의한 실측치부다 훨씬 큰 값으로 과대평가 하는 경향이 있었다. 직경크기에 따른 지지력의 차이인 치수효과는 모래지반의 경우 확인할 수 있었으나. 모래/풍화토층 지반의 경 추에는 오히려 큰 직경의 말뚝이 작은 직경의 말뚝보다 크게 나타나는 경향을 얻었다.

  • PDF

연직하중을 받는 경사말뚝의 연직지지력에 관한 연구 (A Study on the Vertical Bearing Capacity of Batter Piles Subjected to Vertical Load)

  • 성인출;이민희;최용규;권오균
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.49-55
    • /
    • 2003
  • 본 연구에서는 연직말뚝과 경사말뚝에 대하여 수행한 압력토조 모형실험을 통하여 경사말뚝의 연직하중과 침하량 관계로부터 경사각도에 따른 압축지지력의 증가양상을 분석하였다. 실트질 모래로 형성된 상대밀도 50%의 포화지반에 경사각 0$^\circ$, 5$^\circ$, $10^\circ$, 15$^\circ$, 20$^\circ$의 모형 개단강관말뚝을 항타 관입하였으며, 압력토조내의 구속압력을 35, 70, 그리고 120 kPa로 변화시키면서 재하실험을 수행하였다. 연직 압축지지력은 경사각도가 커짐에 따라 증가하였으며 분석방법에 따라 증가율에는 다소의 차이가 수반되었으나 경사각 5$^\circ$, $10^\circ$, 15$^\circ$인 경우 지지력 증가율은 각각 111, 121, 127 ~ 140 % 정도를 나타내었다. 경사각이 20$^\circ$ 이상인 경우에는 말뚝 두부의 전도로 인하여 모형실험의 수행이 곤란하였다.

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

사질토지반에서 인발하중을 받는 석션말뚝에 관한 연구 (A Study on Behavior of Pull-out Loaded Suction Pile in Sands)

  • 김진복;박종운;진홍민;권오균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.944-955
    • /
    • 2009
  • In this thesis the model tests were performed to the pull-out characteristics of a suction pile subjected to a pull-out in sands. For this model tests, three different soil conditions ($D_r$=45, 65, 82%), three pile diameters (D=100, 150, 200mm) and three pile lengths (L=100, 150, 200mm), were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate pull-out resistances increased as the relative density of sands, pile diameter, length and the ratio of pile length to diameter increased. The ultimate pull-out resistance by Meyerhof method(1973) overestimated that by the model test, but the results using the soil-pile friction angle suggested by Aas(1966) in the Meyerhof(1973) method were in good agreement with the experimental results.

  • PDF

하중 방향(압축-인발)과 말뚝 직경이 말뚝의 지지력에 미치는 영향에 관한 연구 -실내모형시험- (The Effect of Load Direction and Pile Size on the Pile Bearing Capacity : Model Pile Tests)

  • 이인모;백세환
    • 한국지반공학회지:지반
    • /
    • 제8권3호
    • /
    • pp.13-22
    • /
    • 1992
  • Model pile tests using calibration chamber are performed in !his paper in order to clarify the effect of the fundamental differences between the newly developed SPLT(Simple Pile Loading Test)and the conventional pile loading test on the pile bearing capacity. They are : (1) the direction of the applied load to mobilize the skin friction ; and (2) the use of reduced sifted sliding core. The conclusions obtained from the model pile tests are as follows : (1) The skin friction in tension loading is found to be somewhat smaller than that in compression loading. The average ration is 0.73 with the coefficient of variation (COV) of 0.18. (2) The ratio of the tip resistance rosin연 the reduced sized sliding core to that using the whole shoe shows wide scattering ; its average is 0.99 and the COV is 0.28. The aver - age of 0.99 means that there is no considerable difference in the tip resistance whether the reduced sized sliding core or the whole shoe is used, on condition that penetration depth ratio is larger than 4 : if the boundary effect of the chamber test is considered, the resistance of the whole shoe might be even larger.

  • PDF

사질토 지반에서 말뚝의 수평거동 (Lateral Behavior of Sin811e and Group Piles in Sand)

  • 김영수;김병탁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF

토목섬유보강 성토지지말뚝시스템에서의 하중전이 효과에 관한 모형실험 (Laboratory Model Tests on the Load Transfer in Geosynthetic-Reinforced and Pile-Supported Embankment System)

  • 홍원표;이재호
    • 한국지반신소재학회논문집
    • /
    • 제9권3호
    • /
    • pp.9-18
    • /
    • 2010
  • 토목섬유보강 성토지지말뚝시스템에서의 하중전이 특성을 규명하기 위하여 일련의 모형실험을 실시하였다. 모형토조에 단독캡 말뚝을 설치하고, 토목섬유를 포설한 후 성토를 실시하였다. 연약지반 대체재료로서 스펀지고무를 사용하였다. 실험결과 성토지지말뚝시스템의 효율은 일정한 말뚝간격비에서는 성토고가 증가할수록 비선형적으로 증가하여 이후 일정한 값에 수렴하는 경향을 나타내었다. 또한 성토고가 일정한 조건에서는 말뚝간격비가 증가할수록 효율의 크기는 감소하였다. 토목섬유를 보강한 경우, 무보강시와 비교하여 말뚝으로 전이되는 하중이 증가하는 것으로 나타났다. 이는 토목섬유의 보강이 연약지반의 거동을 억지하는데 효과가 있음을 나타내는 것이다. 결국 토목섬유보강 성토지지말뚝시스템에서의 하중전이 특성은 말뚝캡 설치간격, 성토고, 지반의 강도정수 및 토목섬유 강성 등에 복합적으로 영향을 받음을 알 수 있다.

  • PDF

Piled Raft 거동특성에 관한 실험적 연구 (An Experimental Study on Behavior for the Piled Raft)

  • 권오균;이승현;오세붕;임종석;이활
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 기초기술학술발표회
    • /
    • pp.77-89
    • /
    • 2002
  • To analyze a bearing capacity for pile groups, a number of model tests have been done and theoretical methods studied. In the case of design of group pile bearing capacity is calculated with only pile capacity. But uncertainty of bearing capacity and behavior of foundation cap(raft) leads to conservative design ignoring bearing effects of foundation cap. In the case of considering bearing capacity of foundation cap, the simple sum of bearing capacity of foundation cap and pile groups cannot be the bearing capacity of total foundation system. Since cap-pile-soil interaction affects the behavior of pile groups. Thus, understanding cap-pile-soil interaction is very important in optimal design. In this paper, the piled raft behavior is studied through model tests of 2$\times$2, 2$\times$3, 3$\times$3 pile group. Changes of behavior of pile group foundation by touching effects of foundation cap with soil are studied. Also changes of spacing between piles. Foundation cap is made of rigid steel plate and piles are made steel pipes. From this model tests, the changes of behavior changes of pile groups by touching effects of foundation cap with soil are studied.

  • PDF