• 제목/요약/키워드: Model pile

검색결과 715건 처리시간 0.03초

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

모형실험을 통한 사질토 지반에서의 무리말뚝 거동에 대한 상부기초 접촉 효과 연구 (An Experimental Study of the Effect of Pile Cap on Behaviors of Group Piles)

  • 이수형;진봉근;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.259-266
    • /
    • 1999
  • In case that pile cap is in direct contact with underlying soil, the bearing mechanism for pile groups, including direct bearing effect of cap and its induced influence on pile-soil-cap interaction, should be properly considered. In this paper, the effects of pile caps on behaviors of pile groups in sandy soils were investigated by model tests, which consist of tests on 3 by 3 pile groups with/without contact on subsoil, single pile with/without contact and cap as a shallow foundation. Also, the influences of pile spacing in group piles on contact effects were investigated. The test results showed that the load carrying capacity of pile cap was large enough not to be ignored. However, the interaction effects due to contact between cap and subsoils were not revealed obviously in working load range. And in the design of pile groups, the bearing effect of pile cap when contacted with subsoils, can be reflected by simply summing up load settlement behaviors of each cap and group piles without contact.

  • PDF

수평하중을 받는 콘크리트말뚝의 모형실험 (Model Tests of Concrete Pile under Lateral Loads)

  • 박종운;김진복;진홍민;권오균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.580-586
    • /
    • 2010
  • The purpose of this study is to analyze the behavior of the concrete pile under the horizontal loads by the model tests in laboratory. The rock ground was modeled by the concrete of about 30MPa, and a model pile was made of some mortar with the capacity of 24MPa. The diameter(D) and length(L) of a model pile was each 1200mm and 1800mm. The embedment depth into the concrete block was varied with 1.0D, 1.5D, and 2.0D in the model tests. The results of model tests showed that the lateral resistance of a pile with the embedment depth of 2.0D was more large than other cases, and the lateral displacement of yielding was similar.

  • PDF

Analysis on inclined or rounded tip piles using 3D printing technology and FE analysis

  • Jaehong Kim;Junyoung Ko;Dohyun Kim
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.91-99
    • /
    • 2023
  • To test the effect of various pile tip shape series of model scale loading tests were carried out on test piles with special pile tips. Special pile tips were made using the 3D printer and were attached to the bottom end of the test pile for loading tests. The pile tips were made to have 30°, 45°, 60° inclined tips, as well as a rounded tip. The main objective of the test was to observe the effect of various pile tip shapes on settlement and penetrability of the pile. Moreover, a numerical model simulating the pile loading test carried out in this study was established and verified based on the loading test results. From this, the stress concentration around the pile tip was investigated. This will allow us to analyze the decrease of stress concentration around the pile tip which is the main cause of the pile tip damage during pile installation. However, modifying the pile tip shape will eventually increase the settlement of the pile. By estimating the degree of increase in pile settlement, the viability and the efficiency of the pile shape modification was judged. In addition, case studies on the effect of different pile tip shape and ground conditions on pile settlement and stress dispersion was conducted.

Sheet Pile 설치에 따른 SCP개량지반의 거동 (Behavior of SCP Improved Ground with Installation of Sheet Pile)

  • 유남재;박병수;정길수
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.211-218
    • /
    • 2002
  • The paper is to show the behavior of composit ground which is installed with sheet pile in soft soil improved by sand compaction pile. The results of load-settlement relationship, earth pressure, stress concentration characteristics, and final water content were obtained by centrifuge model test. Two cases of tests, installation of sheet pile on the corner and both side of the loading plate for the improved SCP ground which was designed twice of the footing width, were performed for the tests under the vertical and horizontal loading and both side of corner. Finite element program(CRISP) for sand compaction pile using elasto-plastic model and numerical analysis for soft soil using modified cam-clay constitutive equation were compared and analized with the results of model tests. The result of analysis show the increased bearing capacity of soil after, SCP and sheet pile was installed.

  • PDF

Evaluation of the effect of rubble mound on pile through dynamic centrifuge model tests

  • Jungwon Yun;Jintae Han
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.415-425
    • /
    • 2023
  • Pile-supported wharves, port structures that support the upper deck, are installed on sloping ground. The sloping ground should be covered with a rubble mound or artificial blocks to protect the interior material from erosion caused by wave force. The behavior of the pile may vary during an earthquake if a rubble mound is installed on the slope. However, studies evaluating the effect of rubble mound on the pile during an earthquake are limited. Here, we performed dynamic centrifuge model tests to evaluate the dynamic behavior of piles installed in a slope reinforced with rubble mound. In the structure, some sections (single-pile, 2×2 group-pile) were selected for the experiment. The moment of the group-pile decreased by up to 26% upon installation of the rubble mound, whereas the moment of the single-pile increased by up to 41%, thus demonstrating conflicting results.

Bending moments in raft of a piled raft system using Winkler analysis

  • Jamil, Irfan;Ahmad, Irshad
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.41-48
    • /
    • 2019
  • Bending moments in the raft of a pile raft system is affected by pile-pile interaction and pile-raft interaction, amongst other factors. Three-Dimensional finite element program has to be used to evaluate these bending moments. Winkler type analysis is easy to use but it however ignores these interactions. This paper proposes a very simplified and novel method for finding bending moments in raft of a piled raft based on Winkler type where raft is supported on bed of springs considering pile-pile and pile-raft interaction entitled as "Winkler model for piled raft (WMPR)" The pile and raft spring stiffness are based on load share between pile and raft and average pile raft settlement proposed by Randolph (1994). To verify the results of WMPR, raft bending moments are compared with those obtained from PLAXIS 3D software. A total of sixty analysis have Performed varying different parameters. It is found that raft bending moments obtained from WMPR closely match with bending moments obtained from PLAXIS 3D. A comparison of bending moments ignoring any interaction in Winkler model is also made with PLAXIS-3D, which results in large difference of bending moments. Finally, bending moment results from eight different methods are compared with WMPR for a case study. The WMPR, though, a simple method yielded comparable raft bending moments with the most accurate analysis.

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

모형시험을 통한 무리말뚝 내 단독말뚝의 위치별 부주면마찰력에 관한 연구 (A Study on the Negative Skin Friction Depending upon the Locations of Piles in a Group Using Model Test)

  • 임종석;박종희;심종선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1077-1087
    • /
    • 2010
  • Generally most of pile foundations are constructed with group pile rather than single pile. The study on efficiency and bearing capacity which are major elements for rational design of this group pile has been actively progressed, whereas there are truly only a few studies of negative skin friction working on group pile due to the consolidation of ground. The purpose of this study is to determine, among the elements of negative skin friction applied to pile, the occurrence modality of negative skin friction at center, side, and corner of $3{\times}3$ group pile using model test and, based on those observations, to propose the effective design direction of group pile.

  • PDF

사질토지반에서 수평인발하중을 받는 석션말뚝에 관한 연구 (A Study on Behavior of Horizontal Pull-out Loaded suction pile in Sands)

  • 김진복;박종운;진홍민;권오균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1120-1131
    • /
    • 2010
  • In this thesis the model tests were performed to the horizontal pull-out characteristics of a suction pile subjected to a pull in sands. For this model tests, soil conditions ($D_r$=65), three pile diameters (D=100, 150, 200mm) and five loading points (h/L=0, 0.25, 0.5, 0.75, 1) were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate horizontal pull-out resistance by the model test increased as the loading point (h/L) moved downwards from the pile top, and the maximum value reached at the h/L=0.75. The theoretical ultimate horizontal pull-out resistance by Broms(1964) and Hong(1984) agreed well with that by the model test at h/L=0 and 0.25, but their results overestimated the experimental result at lower part of pile and the differences between the theoretical and experimental results were of great. While the horizontal loading applied at the upper part of pile, the pile moved to the horizontal direction with rotating clockwise. As the loading point moved downwards from the pile top, the rotating angle of pile was smaller.

  • PDF