• Title/Summary/Keyword: Model parameter

Search Result 7,278, Processing Time 0.032 seconds

Coprime Factor Reduction of Parameter Varying Controller

  • Saragih, Roberd;Widowati, Widowati
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.836-844
    • /
    • 2008
  • This paper presents an approach to order reduction of linear parameter varying controller for polytopic model. Feasible solutions which satisfy relevant linear matrix inequalities for constructing full-order parameter varying controller evaluated at each polytopic vertices are first found. Next, sufficient conditions are derived for the existence of a right coprime factorization of parameter varying controller. Furthermore, a singular perturbation approximation for time invariant systems is generalized to reduce full-order parameter varying controller via parameter varying right coprime factorization. This generalization is based on solutions of the parameter varying Lyapunov inequalities. The closed loop performance caused by using the reduced order controller is developed. To examine the performance of the reduced-order parameter varying controller, the proposed method is applied to reduce vibration of flexible structures having the transverse-torsional coupled vibration modes.

Design of a Robust Target Tracker for Parameter Variations and Unknown Inputs

  • Kim, Eung-Tai;Andrisani, D. II
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.73-81
    • /
    • 2001
  • This paper describes the procedure to develop a robust estimator design method for a target tracker that accounts for both structured real parameter uncertainties and unknown inputs. Two robust design approaches are combined: the Mini-p-Norm. design method to consider real parameter uncertainties and the $H_{\infty}$ design technique for unknown disturbances and unknown inputs. Constant estimator gains are computed that guarantee the robust performance of the estimator in the presence of parameter variations in the target model and unknown inputs to the target. The new estimator has two design parameters. One design parameter allows the trade off between small estimator error variance and low sensitivity to unknown parameter variations. Another design parameter allows the trade off between the robustness to real parameter variations and the robustness to unknown inputs. This robust estimator design method was applied to the longitudinal motion tracking problem of a T-38 aircraft.

  • PDF

Strength prediction of steady laminar fluid with normal velocity distribution: A simplified truncation technique

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, the analytic solution has been found by using truncation approach. With the help of suitable substitution, different physical parameters are yielded in their non-dimensional form. The governing boundary layer partial differential equations are reduced to a set of ordinary ones by using appropriate similarity transformations. The velocity profile across the domain have also been taken into account. The effect normal velocity profiles buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. It is found that the normal velocity profiles rise with the buoyancy parameter and for the slip parameter. It is observed that the normal velocity profile decreases with the increase of shrinking parameter. The reverse behiour is found for the Casson fluid parameter. The results are numerically computed, analyzed and discussed. For the efficiency of present model, the results are compared with earlier investigations.

A Study on the Attribute Analysis of Software Reliability Model with Shape Parameter Change of Infinite Fault NHPP Lomax Life Distribution (무한고장 NHPP Lomax 수명분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung-il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.20-26
    • /
    • 2019
  • In this study, the optimal shape parameter condition is presented after analyzing the attributes of the software reliability model according to the change of the shape parameter of Loma life distribution with infinite fault NHPP. In order to analyze the software failure phenomena, the parametric estimation method was applied to the Maximum Likelihood Estimation method, and the nonlinear equation was applied to the bisection method. As a result, it was found that when the attributes according to the change of the shape parameter are compared, the smaller the shape parameter is, the better the prediction ability of the true value, and reliability attributes are efficient. Through this study, it is expected that software developers can increase reliability by preliminarily grasping the type of software failure based on shape parameter, and can be used as basic information to improve the software reliability attributes.

Suggestion and Evaluation of a Multi-Regression Linear Model for Creep Life Prediction of Alloy 617 (Alloy 617의 장시간 크리프 수명 예측을 위한 다중회귀 선형 모델의 제안 및 평가)

  • Yin, Song-Nan;Kim, Woo-Gon;Jung, Ik-Hee;Kim, Yong-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • Creep life prediction has been commonly used by a time-temperature parameter (TTP) which is correlated to an applied stress and temperature, such as Larson-Miller (LM), Orr-Sherby-Dorn (OSD), Manson-Haferd (MH) and Manson-Succop (MS) parameters. A stress-temperature linear model (STLM) based on Arrhenius, Dorn and Monkman-Grant equations was newly proposed through a mathematical procedure. For this model, the logarithm time to rupture was linearly dependent on both an applied stress and temperature. The model parameters were properly determined by using a technique of maximum likelihood estimation of a statistical method, and this model was applied to the creep data of Alloy 617. From the results, it is found that the STLM results showed better agreement than the Eno’s model and the LM parameter ones. Especially, the STLM revealed a good estimation in predicting the long-term creep life of Alloy 617.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

Semi-rigid connection modeling for steel frameworks

  • Liu, Yuxin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.431-457
    • /
    • 2010
  • This article provides a discussion of the mathematic modeling of connections for designing and qualifying structures, systems, and components subject to monotonic or cyclic loading. To characterize the force-deformation behavior of connections under monotonic loading, a review of the Ramberg-Osgood, Richard-Abbott, and Menegotto-Pinto models is conducted, and it is shown that these nonlinear functions can be mathematically derived by scaling up or down a linear force-deformation function. A generalized four-parameter model for simulating connection behavior is investigated to facilitate nonlinear regression analysis. In order to perform seismic analysis of frameworks, a hysteretic model accounting for loading, unloading, and reloading is described using the established monotonic model. For preliminary analysis, a method is provided to quickly determine the model parameters that fit approximately with the observed data. To reach more accurate values of the parameters, the methods of nonlinear regression analysis are investigated and the modified Levenberg-Marquardt and separable nonlinear least-square algorithms are applied in determining the model parameters. Example case studies illustrate the procedure for the computation through the use of experimental/analytical data taken form the literature. Transformation of connection curves from the three-parameter model to the four-parameter model for structural analysis is conducted based on the modeling of connections subject to fire.

Estimating Reference Crop Evapotranspiration Using Artificial Neural Network and Temperature-based Climatic Data (인공신경망모형을 이용한 기온기반 기준증발산량 산정)

  • Lee, Sung-Hack;Kim, Maga;Choi, Jin-Yong;Bang, Jehong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.95-105
    • /
    • 2019
  • Evapotranpiration (ET) is one of the important factor in Hydrological cycle and irrigation planning. In this study, temperature-based artificial neural network (ANN) model for daily reference crop ET estimation was developed and compared with reference crop evapotranpiration ($ET_0$) from FAO-56 Penman-Monteith method (FAO-56 PM) and parameter regionalized Hargreaves method. The ANN model was trained and tested for 10 weather stations (5 inland stations and 5 costal stations) and two input climate factors, maximum temperature ($T_{max}$), minimum temperature ($T_{min}$), and extraterrestrial radiation (RA) were used for training and validation of temperature-based ANN model. Monthly reference ET by the ANN model also compared with parameter regionalized Hargreaves method for ANN model applicability evaluation. The ANN model evapotranspiration demonstrated more accordance to FAO-56 PM evapotranspiration than the $ET_0$ from parameter regionalized Hargreaves method(R-Hargreaves). The results of this study proposed that daily reference crop ET estimated by the ANN model could be used in the condition of no sufficient climate data.