• Title/Summary/Keyword: Model gas

Search Result 4,124, Processing Time 0.029 seconds

Rotordynamic Analysis for Stepped-Labyrinth Gas Seals Using Moodys Friction-Factor Model

  • Ha, Tae-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1217-1225
    • /
    • 2001
  • The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moodys wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrers theoretical analysis using Blasius wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrers analysis, but underpredicts by about 20%. For the rotordynamic coefficients, the present analysis generally yields smaller predictied values compared with Scharrers analysis.

  • PDF

Estimation of Synthesis Gas Composition by Biomass Fuel Conditions using Thermodynamic Equilibrium Model (열역학적 평형모델을 이용한 바이오매스 연료조건에 따른 합성가스 조성의 예측)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • A thermochemical equilibrium model was constructed for predicting composition of synthesis gas in biomass gasification. The model included estimation of equilibrium constants using Gibbs free energy. After constructing the model, the results were compared with the experimental values and predictions from a previous model. Gas compositions were reasonably well agreed with them and showed effects of operational and fuel condition. When the reaction temperature increased, the lower heating values decreased due to the decrease in CH4 concentrations. The methane concentrations were lower than those observed in experimental results. The model was used to predict the gas composition and heating values for the cases of mixed fuel of charcoal and un-dry woodchips. Although downdraft gasifiers require fuels less than 15% of moisture contents, the model results indicated that the mixed fuel with charcoal and woodchips which had over 25% of moisture contents could be used in the downdraft gasifiers. It might be explained by increase in energy density resulting from mixing charcoal. The results imply that the efforts and costs for drying biomass fuels could be reduced by mixing charcoal or fuels with higher calorific values.

Estimation of Economic Effects on Overseas Oil and Gas E&P by Macroeconomic Model of Korea (거시경제모형을 이용한 해외석유가스개발사업의 경제적 효과 추정 연구)

  • Kim, Ji-Whan;Chung, Woo Jin;Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.23 no.1
    • /
    • pp.133-156
    • /
    • 2014
  • In general, quantity results of empirical analysis using model shows how much big performance policy has. Therefore this is useful to evaluate a policy. This paper composed macro economic model based on Bank of Korea's quarterly model and annual model, that estimates performance of overseas oil and gas development project to Korean economy in aspect of quantity. In this model, we estimated each effect in real GDP, current account, unemployment rate, CPI and exchange rate carried by recovered amount from overseas oil and gas development project. The recovered amount was evaluated in currency coming from oil and gas acquired from overseas oil and gas development project. Macro economic model of this paper benchmarked macro model composed by Bank of Korea(1997, 2004, 2012). We reviewed model robustness using statistical suitability of each equation and historical simulation for from 1994 to 2011. The recovered amount of overseas oil and gas development project has positive effect in every macro economic index except CPI and exchange rate. Economic effect to macro economic index become bigger with time because the recovered amount of overseas oil and gas development project are increasing until now. Although empirical results of economic effects in every year from the recovered amount of overseas oil and gas development project are different, as of 2011, empirical results showed that the recovered amount of overseas oil and gas development project increase 2.226% and 0.401% in current account and real GDP respectively. And it also decrease 0.489%p in unemployment rate. Exchange rate to US dollars also decrease in amount of 0.379%.

Improving Forecast Accuracy of City Gas Demand in Korea by Aggregating the Forecasts from the Demand Models of Seoul Metropolitan and the Other Local Areas (수도권과 지방권 수요예측모형을 통한 전국 도시가스수요전망의 예측력 향상)

  • Lee, Sungro
    • Environmental and Resource Economics Review
    • /
    • v.26 no.4
    • /
    • pp.519-547
    • /
    • 2017
  • This paper explores whether it is better to forecast city gas demand in Korea using national level data directly or, alternatively, construct forecasts from regional demand models and then aggregate these regional forecasts. In the regional model, we consider gas demand for Seoul metropolitan and the other local areas. Our forecast evaluation exercise for 2013-2016 shows the regional forecast model generally outperforms the national forecasting model. This result comes from the fact that the dynamic properties of each region's gas demands can be better taken into account in the regional demand model. More specifically, the share of residential gas demand in the Seoul metropolitan area is above 50%, and subsequently this demand is heavily influenced by temperature fluctuations. Conversely, the dominant portion of regional gas demand is due to industrial gas consumption. Moreover, electricity is regarded as a substitute for city gas in the residential sector, and industrial gas competes with certain oil products. Our empirical results show that a regional demand forecast model can be an effective alternative to the demand model based on nation-wide gas consumption and that regional information about gas demand is also useful for analyzing sectoral gas consumption.

Estimation of Exhaust Gas Recirculation using In-Cylinder Residual Gas Fraction in an SI Engine (잔류가스 추정 기법을 이용한 EGR율의 예측)

  • 김득상;김성철;황승환;조용석;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2004
  • Residual gas acts as a diluent which results in reducing the in-cylinder temperature as well as the flame speed, significantly affecting fuel economy, NOx emissions and combustion stability. Therefore it is important to determine the residual gas fraction as a function of the engine operating parameters accurately. However, the determination of the residual gas fraction is very sophisticated due to the unsteady state of induction and exhaust process. There has been little work toward the development of a generally applicable model for quantitative predictions of residual gas fraction. In this paper, a simple model for calculating the residual gas fraction in SI engines was suggested. The amount of fresh air was evaluated through AFR and fuel consumption. After this, from the intake temperature and pressure, the amount of total cylinder-charging gas was estimated. The residual gas fraction was derived by comparing the total charging and fresh air. This results coincide with measured EGR value very well.

Effects of Gap Resistance and Failure Location on prompt Fission Gas Release from a Cladding Breach

  • Tak, Nam-Il;Chun, Moon-Hyun;Ahn, Hee-Jin;Park, Jong-Kil;Rhee, In-Hyoung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.184-189
    • /
    • 1997
  • A prompt fission gas release model incorporating the resistance to gas flow in the gap was developed and the effects of gap resistance and failure location on prompt fission gas release from the cladding breach were assessed. The process of prompt fission gas release from the plenum and gap into the coolant was modeled in accordance with three major phenomena: (1) transient gas flow in the gap, (2) the growth of the fission gas bubble while it is still attached to the breach, and (3) the detachment of the fission gas bubble from the breach and mixing with the coolant. The cumulative mass release fraction by the present model was calculated for the case of Young-Gwang 3 & 4 nuclear fuel rod as a typical example. The results showed that the release behavior of prompt fission gas with time was different from the frictionless model which has frequently been used in a simplified approach, and that the location of cladding failure was another key factor for the prompt fission gas release process due to the resistance in the gap.

  • PDF

A Statistical Model for Predicting Incipient Point and Quantity of Gas Condensate in Gas Pipelines (가스 배관내 가스 컨덴세이트의 발생 시작점 및 발생량 예측을 위한 통계 모델 연구)

  • Chang, Seung-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.1-5
    • /
    • 2006
  • With the rapid increase in gas consumption, the role of pipelines as a transportation means of natural gas is increasing. In general, when natural gas is being transported in pipelines, some liquid mainly from formation of condensate is introduced and this phenomenon makes operational problems more complex in the gas industry. Thus, an appropriate method is necessary for predicting the effect of presence of gas condensate on operational efficiency. In this study, a statistical model was developed using an integrated single- and two-phase flows concept. Using this model, the effects of the incipient point of gas condensate and its quantity on outlet pressure were analyzed. Also, the effect of variations of flow regimes in two-phase region on outlet pressure after the incipient point was analyzed.

  • PDF

A Comparative Study Between CFD and 0-D Simulation of Diesel Sprays with Several Fuel Injection Patterns Using Gas Jet Spray Model (가스제트 분무 모델을 이용한 다양한 분사 패턴의 디젤 분무에 대한 CFD 및 0-D 시뮬레이션 비교 연구)

  • Lee, Choong-Hoon
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • The CFD simulation of diesel spray tip penetrations were compared with 0-D simulation for experimental data obtained with common rail injection system. The simulated four injection patterns include single, pilot and split injections. The CFD simulation of the spray penetration over these injection patterns was performed using the KIVA-3V code, which was implemented with both the standard KIVA spray and original gas jet sub-models. 0-D simulation of the spray tip penetration with time-varying injection profiles was formulated based on the effective injection velocity concept as an extension of steady gas jet theory. Both the CFD simulation of the spray tip penetration with the standard KIVA spray model and 0-D simulation matched better with the experimental data than the results of the gas jet model for the entire fuel injection patterns.

Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor (수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산)

  • Song, Kee-nam;Kim, Y-W
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

A Study on Modeling of the Pneumatic Part in a Gas Blow-Down System Including Pressure Regulator and Pipe-Line Characteristics (압력조절밸브와 배관 특성을 포함한 유도무기용 기체 블로우다운 시스템의 공압부 모델링에 관한 연구)

  • Park, Youngwoo
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.32-39
    • /
    • 2017
  • In this study, a mathematical model of the pneumatic part in a gas blow-down system is proposed. The mathematical model consists of four major parts: pressure vessel, reservoir, pressure regulator and pipe-line. To ensure accuracy in long-time simulations, heat transfer between gas and pressure vessel is considered. The model is validated by comparing simulation results with experimental data. Experiments are conducted on the ground, where free convection can be assumed. Simulation results indicate the proposed model can accurately describe behavior of a gas blow-down system. Therefore, it may be used for design and analysis of similar systems with a slight modification.